Nischal P. Mungle, Dnyaneshwar M. Mate, Sham H. Mankar, Vithoba T. Tale, Ankita Mehta, Shrikrishna A. Dhale, Vikrant S. Vairagade
{"title":"Predictive modeling for concrete properties under variable curing conditions using advanced machine learning approaches","authors":"Nischal P. Mungle, Dnyaneshwar M. Mate, Sham H. Mankar, Vithoba T. Tale, Ankita Mehta, Shrikrishna A. Dhale, Vikrant S. Vairagade","doi":"10.1007/s42107-024-01174-x","DOIUrl":null,"url":null,"abstract":"<div><p>Such is the need for this work, since accurate concrete strength prediction at different curing conditions is critical to having structures that are both strong and long-lasting. Traditional methods for the prediction of concrete strength often lack the complexity that occurs in the interaction of the different environmental factors involved, hence leading to suboptimal practices in curing with potential structural weaknesses. Current research into this area has typically focused on disparate data sources and rather naïve modeling methods, further limiting predictive accuracy and creating a general lack of comprehensive knowledge of curing dynamics. Such limitations bring out the need for a more integrated, sophisticated predictive modeling approach to explain variability in concrete strength levels. This paper proposes a novel predictive modeling framework that will be powered by advanced machine learning techniques to take up these challenges. It will adopt a multimodal data integration approach driven by a combination of sensor data related to temperature, humidity, and strain gauges; environmental data related to weather conditions and atmospheric pressure; and historical records, such as mix design and curing duration, further leveraging techniques from data fusion, including the Kalman filter and Bayesian networks. This will be further integrated into a unified, enriched dataset, encapsulating the complex interaction of factors influencing concrete strength. In the present work, this is a chosen approach: hybrid modeling with ensemble learning using XGBoost for the prediction of static features, and Long Short-Term Memory (LSTM) networks for capturing temporal dependencies. In this case, a combination of these models via weighted averaging or stacking improves the accuracy of the predictions to a very great extent: the R² increased from 0.85 to 0.92, and MAE levels by 10–15%. In addition to that, AutoML with Feature Tools implements advanced feature engineering through the generation and selection of optimal features on transformation and aggregation primitives, further refining model performance and interpretability. This process at times reduces the Root Mean Squared Error levels by 5–10%. Finally, Bayesian Neural Networks together with Sobol sensitivity analysis can be used for handling uncertainty and uncovering key factors. BNN provides probabilistic predictions, therefore 95% confidence intervals, while Sobol analysis identifies those critical features that contribute more to variability and allows an in-depth understanding of the role each factor has in driving concrete strength. Indeed, the framework propounded in this work has made great strides in predictive abilities concerning concrete strength variability and will permit more efficient curing practices, thereby making construction outcomes more secure and long-lasting.</p></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"25 8","pages":"6249 - 6265"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-024-01174-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Such is the need for this work, since accurate concrete strength prediction at different curing conditions is critical to having structures that are both strong and long-lasting. Traditional methods for the prediction of concrete strength often lack the complexity that occurs in the interaction of the different environmental factors involved, hence leading to suboptimal practices in curing with potential structural weaknesses. Current research into this area has typically focused on disparate data sources and rather naïve modeling methods, further limiting predictive accuracy and creating a general lack of comprehensive knowledge of curing dynamics. Such limitations bring out the need for a more integrated, sophisticated predictive modeling approach to explain variability in concrete strength levels. This paper proposes a novel predictive modeling framework that will be powered by advanced machine learning techniques to take up these challenges. It will adopt a multimodal data integration approach driven by a combination of sensor data related to temperature, humidity, and strain gauges; environmental data related to weather conditions and atmospheric pressure; and historical records, such as mix design and curing duration, further leveraging techniques from data fusion, including the Kalman filter and Bayesian networks. This will be further integrated into a unified, enriched dataset, encapsulating the complex interaction of factors influencing concrete strength. In the present work, this is a chosen approach: hybrid modeling with ensemble learning using XGBoost for the prediction of static features, and Long Short-Term Memory (LSTM) networks for capturing temporal dependencies. In this case, a combination of these models via weighted averaging or stacking improves the accuracy of the predictions to a very great extent: the R² increased from 0.85 to 0.92, and MAE levels by 10–15%. In addition to that, AutoML with Feature Tools implements advanced feature engineering through the generation and selection of optimal features on transformation and aggregation primitives, further refining model performance and interpretability. This process at times reduces the Root Mean Squared Error levels by 5–10%. Finally, Bayesian Neural Networks together with Sobol sensitivity analysis can be used for handling uncertainty and uncovering key factors. BNN provides probabilistic predictions, therefore 95% confidence intervals, while Sobol analysis identifies those critical features that contribute more to variability and allows an in-depth understanding of the role each factor has in driving concrete strength. Indeed, the framework propounded in this work has made great strides in predictive abilities concerning concrete strength variability and will permit more efficient curing practices, thereby making construction outcomes more secure and long-lasting.
期刊介绍:
The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt. Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate: a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.