Infrared Light Activated Highly Efficient Cell Therapy Using Flower-Shaped Microstructure Device

IF 3.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY Advanced Therapeutics Pub Date : 2024-10-11 DOI:10.1002/adtp.202400046
Ashwini Surendra Shinde, Pallavi Shinde, Moeto Nagai, Srabani Kar, Tuhin Subhra Santra
{"title":"Infrared Light Activated Highly Efficient Cell Therapy Using Flower-Shaped Microstructure Device","authors":"Ashwini Surendra Shinde,&nbsp;Pallavi Shinde,&nbsp;Moeto Nagai,&nbsp;Srabani Kar,&nbsp;Tuhin Subhra Santra","doi":"10.1002/adtp.202400046","DOIUrl":null,"url":null,"abstract":"<p>In this pioneering study, an infrared light-activated highly efficient and uniform, small to large biomolecular delivery into various cell types is developed using a flower-shaped microstructure device (FMD). Featuring a unique structural design, this FMD consists of 8 µm in length, with edges of ≈3 and 20 µm gaps between FMD microstructure. When subjected to IR laser exposure at 1050 nm, the FMD triggers the generation of photothermal cavitation bubbles, exerting jet fluid flow on the cell's plasma membrane surface, and facilitating biomolecule delivery into cells. The platform achieves efficient intracellular delivery spanning various biomolecules — from low-molecular-weight propidium iodide dye to higher molecular weight siRNA, plasmid, and enzymes — across human cervical (SiHa), mouse fibroblast (L929), and neural crest-derived (N2a) cancer cells, ensuring consistently high efficiency without compromising cell viability. 95% delivery efficacy and 96% cell viability are achieved for smaller molecules like PI dye in L929 cells. For larger biomolecules such as enzymes, transfection efficiency reached 82%, and cell viability is nearly 90% in SiHa cells. This is confirmed via confocal microscopy and flow cytometry, the FMD-based delivery system holds broad potential for cellular diagnostics and therapeutics, promising significant advancements in cellular research and biomedical treatments.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"7 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400046","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In this pioneering study, an infrared light-activated highly efficient and uniform, small to large biomolecular delivery into various cell types is developed using a flower-shaped microstructure device (FMD). Featuring a unique structural design, this FMD consists of 8 µm in length, with edges of ≈3 and 20 µm gaps between FMD microstructure. When subjected to IR laser exposure at 1050 nm, the FMD triggers the generation of photothermal cavitation bubbles, exerting jet fluid flow on the cell's plasma membrane surface, and facilitating biomolecule delivery into cells. The platform achieves efficient intracellular delivery spanning various biomolecules — from low-molecular-weight propidium iodide dye to higher molecular weight siRNA, plasmid, and enzymes — across human cervical (SiHa), mouse fibroblast (L929), and neural crest-derived (N2a) cancer cells, ensuring consistently high efficiency without compromising cell viability. 95% delivery efficacy and 96% cell viability are achieved for smaller molecules like PI dye in L929 cells. For larger biomolecules such as enzymes, transfection efficiency reached 82%, and cell viability is nearly 90% in SiHa cells. This is confirmed via confocal microscopy and flow cytometry, the FMD-based delivery system holds broad potential for cellular diagnostics and therapeutics, promising significant advancements in cellular research and biomedical treatments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用花形微结构装置的红外光激活高效细胞疗法
在这项开创性的研究中,利用花形微结构装置(FMD)开发出了一种红外光激活的高效、均匀、从小到大的生物分子输送技术,可输送到各种类型的细胞中。这种 FMD 具有独特的结构设计,长度为 8 µm,边缘≈3,FMD 微结构之间的间隙为 20 µm。当受到波长为 1050 纳米的红外激光照射时,FMD 会引发光热空化气泡的产生,在细胞质膜表面形成喷射液流,促进生物分子向细胞内输送。该平台可在人宫颈癌细胞(SiHa)、小鼠成纤维细胞(L929)和神经嵴衍生癌细胞(N2a)中实现跨越各种生物分子(从低分子量的碘化丙啶染料到高分子量的 siRNA、质粒和酶)的高效细胞内递送,确保在不影响细胞活力的情况下始终保持高效率。对于 L929 细胞中的较小分子(如 PI 染料),可达到 95% 的递送效率和 96% 的细胞存活率。对于酶等较大的生物分子,转染效率达到 82%,SiHa 细胞中的细胞存活率接近 90%。通过共聚焦显微镜和流式细胞术证实,基于 FMD 的传输系统在细胞诊断和治疗方面具有广泛的潜力,有望在细胞研究和生物医学治疗方面取得重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Therapeutics
Advanced Therapeutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.10
自引率
2.20%
发文量
130
期刊最新文献
Exploiting Spinach-Derived Extracellular Vesicles for Anti-Obesity Therapy Through Lipid Accumulation Inhibition (Adv. Therap. 11/2024) Ex Vivo Modeling of the Tumor Microenvironment to Develop Therapeutic Strategies for Gliomas (Adv. Therap. 11/2024) Issue Information (Adv. Therap. 19/2024) In Vivo Combined Photoacoustic Imaging and Photothermal Treatment of HPV-Negative Head and Neck Carcinoma with NIR-Responsive Non-Persistent Plasmon Nano-Architectures (Adv. Therap. 10/2024) Albumin-Loaded Silica Nanomaterials Functionalized with Organotin(IV) Agents: Theranostic Materials Against Triple-Negative Breast Cancer (Adv. Therap. 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1