Targeting VEGF-A in an Immunocompetent Orthotopic Mouse Model of Mesenchymal Glioblastoma Improves Antitumorigenicity and Decreases Proinflammatory Response in Normal Brain Tissue after Fractionated Radiotherapy

IF 3.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY Advanced Therapeutics Pub Date : 2025-01-23 DOI:10.1002/adtp.202400374
Alexander Edward Nieto, Daniel Felix Fleischmann, Kristian Unger, Valerie Albrecht, Jessica Maas, Horst Zitzelsberger, Claus Belka, Martin Proescholdt, Kirsten Lauber, Maximilian Niyazi, Michael Orth
{"title":"Targeting VEGF-A in an Immunocompetent Orthotopic Mouse Model of Mesenchymal Glioblastoma Improves Antitumorigenicity and Decreases Proinflammatory Response in Normal Brain Tissue after Fractionated Radiotherapy","authors":"Alexander Edward Nieto,&nbsp;Daniel Felix Fleischmann,&nbsp;Kristian Unger,&nbsp;Valerie Albrecht,&nbsp;Jessica Maas,&nbsp;Horst Zitzelsberger,&nbsp;Claus Belka,&nbsp;Martin Proescholdt,&nbsp;Kirsten Lauber,&nbsp;Maximilian Niyazi,&nbsp;Michael Orth","doi":"10.1002/adtp.202400374","DOIUrl":null,"url":null,"abstract":"<p>Glioblastoma is the most aggressive primary brain tumor characterized by a dismal prognosis and a profound therapy resistance that is most evident for the mesenchymal molecular subtype of glioblastoma. Targeting vascular endothelial growth factor (VEGF)-A by the monoclonal antibody bevacizumab, despite failing to improve survival in randomized trials, yields relevant benefits in glioblastoma patients such as reduction of radionecrosis, an adverse event associated with radiotherapy. This demands for continued research to identify optimal combinations of anti-VEGF-A and standard therapies for glioblastoma treatment. We show here that blocking VEGF-A in an immune competent orthotopic glioblastoma mouse model resembling the adverse mesenchymal molecular subtype increases the tumoricidal effect of computed tomography (CT)-based fractionated radiotherapy and also rectifies irradiation-induced expression of genes with known association to mesenchymal subtype enrichment as revealed by microarray-based transcriptome analyses of explanted tumors. VEGF-A blockade also decreases the expression of myeloid-cell-related gene patterns in irradiated tumors and lowers inflammatory response in normal brain tissue after tumor irradiation. Hence, these data both provide a hint how blockade of VEGF-A increases the effect of radiotherapy in mesenchymal glioblastoma and a mechanistic base for clinical observations reporting reduced incidences of radionecrosis in glioblastoma patients treated with radiotherapy upon concurrent administration of bevacizumab.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adtp.202400374","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adtp.202400374","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma is the most aggressive primary brain tumor characterized by a dismal prognosis and a profound therapy resistance that is most evident for the mesenchymal molecular subtype of glioblastoma. Targeting vascular endothelial growth factor (VEGF)-A by the monoclonal antibody bevacizumab, despite failing to improve survival in randomized trials, yields relevant benefits in glioblastoma patients such as reduction of radionecrosis, an adverse event associated with radiotherapy. This demands for continued research to identify optimal combinations of anti-VEGF-A and standard therapies for glioblastoma treatment. We show here that blocking VEGF-A in an immune competent orthotopic glioblastoma mouse model resembling the adverse mesenchymal molecular subtype increases the tumoricidal effect of computed tomography (CT)-based fractionated radiotherapy and also rectifies irradiation-induced expression of genes with known association to mesenchymal subtype enrichment as revealed by microarray-based transcriptome analyses of explanted tumors. VEGF-A blockade also decreases the expression of myeloid-cell-related gene patterns in irradiated tumors and lowers inflammatory response in normal brain tissue after tumor irradiation. Hence, these data both provide a hint how blockade of VEGF-A increases the effect of radiotherapy in mesenchymal glioblastoma and a mechanistic base for clinical observations reporting reduced incidences of radionecrosis in glioblastoma patients treated with radiotherapy upon concurrent administration of bevacizumab.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Therapeutics
Advanced Therapeutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.10
自引率
2.20%
发文量
130
期刊最新文献
Self-Assembled Nanocarriers of Synthetic and Natural Plasmalogens for Potential Nanomedicine Development (Adv. Therap. 2/2025) Issue Information (Adv. Therap. 2/2025) Eltrombopag Inhibited Liver Cancer by Enhancing SMYD4 Protein Degradationvia TRIP12 Ubiquitinase Targeting VEGF-A in an Immunocompetent Orthotopic Mouse Model of Mesenchymal Glioblastoma Improves Antitumorigenicity and Decreases Proinflammatory Response in Normal Brain Tissue after Fractionated Radiotherapy Full Disappearance of PC3-Luc Prostate Tumors Mediated by Hyperthermia Under Low Intensity Ultrasound Application in the Presence of Magnetosomes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1