{"title":"Modulation of Northern Europe near-term anthropogenic warming and wettening assessed through internal variability storylines","authors":"Aurélien Liné, Christophe Cassou, Rym Msadek, Sylvie Parey","doi":"10.1038/s41612-024-00759-2","DOIUrl":null,"url":null,"abstract":"Internal variability arising from the inherently chaotic nature of the climate system has amplified or obscured human-caused changes, especially at regional scales in the extratropics, where its contribution to climate variability is the largest. It is virtually certain that this will continue in the near-term. We here focus on the Northern Europe region, whose variability is largely controlled by the North Atlantic Oscillation (NAO) and the Atlantic Meridional Overturning Circulation (AMOC) through remote dynamical and thermodynamic processes, and introduce the concept of internal variability storylines (IVS) to explore, understand, and quantify the role of the two combined drivers of internal variability in the modulation of the anthropogenic warming by 2040 in winter. Based on a large ensemble of historical-scenario simulations, we show that the high-impact IVS, characterised by weak AMOC decline and a decadal shift of the NAO toward dominant positive phase, leads faster to warmer-wetter conditions independently of actual and future greenhouse gases emissions. By contrast, amplified AMOC reduction and more recurrent negative NAO can considerably damp both warming and wettening at near-term. In the latter IVS, we provide evidence that winter-severe conditions similar to those in 2010, that had been responsible for widespread socio-economic disruptions, remain almost as likely to occur by 2040. Reframing the uncertain climate outcomes into the physical science space in a conditional form through the prism of IVS makes climate information relevant for accurate risk assessments and adaptation planning.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00759-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00759-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Internal variability arising from the inherently chaotic nature of the climate system has amplified or obscured human-caused changes, especially at regional scales in the extratropics, where its contribution to climate variability is the largest. It is virtually certain that this will continue in the near-term. We here focus on the Northern Europe region, whose variability is largely controlled by the North Atlantic Oscillation (NAO) and the Atlantic Meridional Overturning Circulation (AMOC) through remote dynamical and thermodynamic processes, and introduce the concept of internal variability storylines (IVS) to explore, understand, and quantify the role of the two combined drivers of internal variability in the modulation of the anthropogenic warming by 2040 in winter. Based on a large ensemble of historical-scenario simulations, we show that the high-impact IVS, characterised by weak AMOC decline and a decadal shift of the NAO toward dominant positive phase, leads faster to warmer-wetter conditions independently of actual and future greenhouse gases emissions. By contrast, amplified AMOC reduction and more recurrent negative NAO can considerably damp both warming and wettening at near-term. In the latter IVS, we provide evidence that winter-severe conditions similar to those in 2010, that had been responsible for widespread socio-economic disruptions, remain almost as likely to occur by 2040. Reframing the uncertain climate outcomes into the physical science space in a conditional form through the prism of IVS makes climate information relevant for accurate risk assessments and adaptation planning.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.