Fabrication of tight polyamide nanofiltration membrane by using a pyridine-diamine precursor for heavy metal ions removal

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2024-11-06 DOI:10.1016/j.seppur.2024.130424
Xiaohui Yi, Niamat Ullah, Qianqian Zhao, Jun Xiao, Ningrui Zhang, Shao-Lu Li, Yunxia Hu, Genghao Gong
{"title":"Fabrication of tight polyamide nanofiltration membrane by using a pyridine-diamine precursor for heavy metal ions removal","authors":"Xiaohui Yi, Niamat Ullah, Qianqian Zhao, Jun Xiao, Ningrui Zhang, Shao-Lu Li, Yunxia Hu, Genghao Gong","doi":"10.1016/j.seppur.2024.130424","DOIUrl":null,"url":null,"abstract":"Nanofiltration offers a promising solution for removing heavy metal ions from wastewater, thereby mitigating ecological and environmental risks. In this study, we synthesized a novel pyridine-diamine precursor 2,6-dipiperazine pyridine (PyBPIP), and employed it as the sole aqueous monomer to fabricate tight polyamide (PA) nanofiltration (NF) membranes <em>via</em> interfacial polymerization (IP) method with trimesoyl chloride for the separation of heavy metals. The resulting membrane features an ultrathin PA functional layer (approximately 60 nm), a lower molecular weight cut-off of 251 Da, and a weakly negatively charged surface. This NF membrane exhibits competitive water permeance of approximately 7.67 LMH/bar and excellent rejection rates exceeding 98 % for various heavy metals ions including Zn<sup>2+</sup>, Mn<sup>2+</sup>, Cu<sup>2+</sup>, along with outstanding separation performance for other divalent cations. Additionally, the NF membrane also exhibits robust stability during the 72-h operational test. In summary, this study demonstrates the feasibility of designing suitable monomers for the preparation of highly perm-selective NF membranes for the removal of heavy metal ions in wastewater.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.130424","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofiltration offers a promising solution for removing heavy metal ions from wastewater, thereby mitigating ecological and environmental risks. In this study, we synthesized a novel pyridine-diamine precursor 2,6-dipiperazine pyridine (PyBPIP), and employed it as the sole aqueous monomer to fabricate tight polyamide (PA) nanofiltration (NF) membranes via interfacial polymerization (IP) method with trimesoyl chloride for the separation of heavy metals. The resulting membrane features an ultrathin PA functional layer (approximately 60 nm), a lower molecular weight cut-off of 251 Da, and a weakly negatively charged surface. This NF membrane exhibits competitive water permeance of approximately 7.67 LMH/bar and excellent rejection rates exceeding 98 % for various heavy metals ions including Zn2+, Mn2+, Cu2+, along with outstanding separation performance for other divalent cations. Additionally, the NF membrane also exhibits robust stability during the 72-h operational test. In summary, this study demonstrates the feasibility of designing suitable monomers for the preparation of highly perm-selective NF membranes for the removal of heavy metal ions in wastewater.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用吡啶-二胺前体制造用于去除重金属离子的紧密聚酰胺纳滤膜
纳滤为去除废水中的重金属离子,从而降低生态和环境风险提供了一种前景广阔的解决方案。在这项研究中,我们合成了一种新型吡啶二胺前体 2,6-二哌嗪吡啶 (PyBPIP),并将其作为唯一的水性单体,通过与三甲基甲酰氯进行界面聚合 (IP) 的方法制造出紧密的聚酰胺 (PA) 纳滤膜 (NF),用于分离重金属。所制备的膜具有超薄聚酰胺功能层(约 60 nm)、251 Da 的较低分子量截止值和弱负电荷表面。这种 NF 膜的水渗透率约为 7.67 LMH/bar,对各种重金属离子(包括 Zn2+、Mn2+、Cu2+)的抑制率超过 98%,对其他二价阳离子的分离性能也非常出色。此外,在 72 小时的运行测试中,NF 膜还表现出很强的稳定性。总之,这项研究证明了设计合适的单体来制备用于去除废水中重金属离子的高永久选择性 NF 膜的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
Electrospun bimodal nanofibrous membranes for high-performance, multifunctional, and light-weight air filtration: A review High performance loose-structured membrane enabled by rapid co-deposition of dopamine and polyamide-amine for dye separation Hydrochar supported strategy for nZVI to remove bisphenol A and Cr(VI): Performance, synergetic mechanism, and life cycle assessment Novel ethylbenzyl and hydroxyethyl quaternary ammonium collectors for co-reverse flotation desilication and impurity removal from phosphogypsum: Flotation performance and mechanism Fabrication of tight polyamide nanofiltration membrane by using a pyridine-diamine precursor for heavy metal ions removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1