Chain-Melting Temperature Depression in the Organic Layer of Two-Dimensional Perovskites

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-11-06 DOI:10.1021/acsenergylett.4c02645
Emily J. Dalley, Leo C. Bloxham, Jyorthana R. Muralidhar, Perry W. Martin, Ian J. Kim, Connor G. Bischak
{"title":"Chain-Melting Temperature Depression in the Organic Layer of Two-Dimensional Perovskites","authors":"Emily J. Dalley, Leo C. Bloxham, Jyorthana R. Muralidhar, Perry W. Martin, Ian J. Kim, Connor G. Bischak","doi":"10.1021/acsenergylett.4c02645","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) perovskites with <i>n</i>-alkylammonium cations often undergo a solid–solid phase transition upon changes in pressure or temperature, during which the organic cations undergo an order-to-disorder chain-melting transition. Here, we show that blending halides and organic cations of varying lengths decreases the phase transition temperature of Cu- and Mn-based 2D perovskites. The magnitude of this decrease depends on the relative lengths of the two <i>n</i>-alkylammonium cations. For instance, blending <i>n</i>-decylammonium (DA) with <i>n</i>-undecylammonium (UDA) results in a 5 °C decrease in the phase transition temperature compared to pure DA<sub>2</sub>CuBr<sub>4</sub>. In contrast, blending DA with <i>n</i>-dodecylammonium (DDA) causes a 25 °C decrease. Furthermore, we found that blending Cu<sup>2+</sup> and Mn<sup>2+</sup> has a minimal effect on the phase transition temperature due to similar lattice spacing between the inorganic layers in DA<sub>2</sub>CuCl<sub>4</sub> and DA<sub>2</sub>MnCl<sub>4</sub>. Our study suggests new design principles for tuning structural phase transitions in 2D perovskites through alloying halides, organic cations, and metal cations.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02645","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) perovskites with n-alkylammonium cations often undergo a solid–solid phase transition upon changes in pressure or temperature, during which the organic cations undergo an order-to-disorder chain-melting transition. Here, we show that blending halides and organic cations of varying lengths decreases the phase transition temperature of Cu- and Mn-based 2D perovskites. The magnitude of this decrease depends on the relative lengths of the two n-alkylammonium cations. For instance, blending n-decylammonium (DA) with n-undecylammonium (UDA) results in a 5 °C decrease in the phase transition temperature compared to pure DA2CuBr4. In contrast, blending DA with n-dodecylammonium (DDA) causes a 25 °C decrease. Furthermore, we found that blending Cu2+ and Mn2+ has a minimal effect on the phase transition temperature due to similar lattice spacing between the inorganic layers in DA2CuCl4 and DA2MnCl4. Our study suggests new design principles for tuning structural phase transitions in 2D perovskites through alloying halides, organic cations, and metal cations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维过氧化物有机层中的链式熔融温度降低
含有正烷基铵阳离子的二维(2D)包晶往往会在压力或温度变化时发生固-固相变,其间有机阳离子会发生有序到无序的链熔化转变。在这里,我们展示了混合不同长度的卤化物和有机阳离子会降低铜基和锰基二维包晶的相变温度。这种降低的幅度取决于两个正烷基铵阳离子的相对长度。例如,将正癸基铵(DA)与正十一烷基铵(UDA)混合,相变温度会比纯 DA2CuBr4 降低 5 °C。相比之下,将 DA 与正十二烷基铵 (DDA) 混合会导致相变温度降低 25 °C。此外,我们还发现,由于 DA2CuCl4 和 DA2MnCl4 中无机层之间的晶格间距相似,掺入 Cu2+ 和 Mn2+ 对相变温度的影响微乎其微。我们的研究为通过合金化卤化物、有机阳离子和金属阳离子来调整二维包晶石的结构相变提出了新的设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Quantification of Lithium Battery Fires in Internal Short Circuit Chain-Melting Temperature Depression in the Organic Layer of Two-Dimensional Perovskites High-Entropy Ultrathin Amorphous Metal–Organic Framework-Stabilized Ru(Mo) Dual-Atom Sites for Water Oxidation Photoremixing of Photosegregated Formamidinium/Cesium Lead Iodide/Bromide Thin Films under Pulsed Laser Excitation Kinetic Control over Disproportionation Stabilizes Wurster’s Blue Catholyte for Nonaqueous Redox Flow Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1