High-Entropy Ultrathin Amorphous Metal–Organic Framework-Stabilized Ru(Mo) Dual-Atom Sites for Water Oxidation

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-11-06 DOI:10.1021/acsenergylett.4c02552
Xueqin Mu, Min Yu, Xingyu Liu, Yuru Liao, Fanjiao Chen, Haozhe Pan, Ziyue Chen, Suli Liu, Dingsheng Wang, Shichun Mu
{"title":"High-Entropy Ultrathin Amorphous Metal–Organic Framework-Stabilized Ru(Mo) Dual-Atom Sites for Water Oxidation","authors":"Xueqin Mu, Min Yu, Xingyu Liu, Yuru Liao, Fanjiao Chen, Haozhe Pan, Ziyue Chen, Suli Liu, Dingsheng Wang, Shichun Mu","doi":"10.1021/acsenergylett.4c02552","DOIUrl":null,"url":null,"abstract":"High-entropy metal–organic frameworks (HE-MOFs) offer immense potential in electrocatalysis due to their diverse metallic compositions and high densities of active sites. Integrating bimetallic single-atom catalysts (SACs) with HE-MOFs for enhanced oxygen evolution reaction (OER) performance remains challenging. Here, we stabilize atomically dispersed Ru and Mo in amorphous HE-MOF nanosheets (HE(Ru,Mo)-MOFs) via in situ-formed amorphous high-entropy oxides, elucidating the deprotonation mechanism. Evidence supports the presence of high-density O-bridged Ru and Mo dual-atom sites. The multimetallic composition induces electronic redistribution and balances the oxidation state of metal sites, enhancing intrinsic OER activity. HE(Ru,Mo)-MOFs exhibit low OER overpotentials of 267 mV@10 mA cm<sup>–2</sup> and 266 mV@10 mA cm<sup>–2</sup> in alkaline freshwater and industrial wastewater, respectively, with exceptional durability surpassing that of commercial RuO<sub>2</sub> catalysts. Mechanistic insights reveal that high atomic dispersion facilitates rapid charge transfer and intermediate transformation, promising advanced catalysts for energy conversion.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02552","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy metal–organic frameworks (HE-MOFs) offer immense potential in electrocatalysis due to their diverse metallic compositions and high densities of active sites. Integrating bimetallic single-atom catalysts (SACs) with HE-MOFs for enhanced oxygen evolution reaction (OER) performance remains challenging. Here, we stabilize atomically dispersed Ru and Mo in amorphous HE-MOF nanosheets (HE(Ru,Mo)-MOFs) via in situ-formed amorphous high-entropy oxides, elucidating the deprotonation mechanism. Evidence supports the presence of high-density O-bridged Ru and Mo dual-atom sites. The multimetallic composition induces electronic redistribution and balances the oxidation state of metal sites, enhancing intrinsic OER activity. HE(Ru,Mo)-MOFs exhibit low OER overpotentials of 267 mV@10 mA cm–2 and 266 mV@10 mA cm–2 in alkaline freshwater and industrial wastewater, respectively, with exceptional durability surpassing that of commercial RuO2 catalysts. Mechanistic insights reveal that high atomic dispersion facilitates rapid charge transfer and intermediate transformation, promising advanced catalysts for energy conversion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于水氧化的高熵超薄无定形金属有机框架-稳定 Ru(Mo) 双原子位点
高熵金属有机框架(HE-MOFs)因其多样化的金属成分和高密度的活性位点而在电催化方面具有巨大的潜力。将双金属单原子催化剂(SAC)与 HE-MOFs 相结合以提高氧进化反应(OER)的性能仍然具有挑战性。在这里,我们通过原位形成的无定形高熵氧化物,将原子分散的 Ru 和 Mo 稳定在无定形 HE-MOF 纳米片(HE(Ru,Mo)-MOFs)中,并阐明了去质子化机理。证据支持高密度 O 桥接 Ru 和 Mo 双原子位点的存在。多金属成分诱导了电子再分布,平衡了金属位点的氧化态,提高了固有的 OER 活性。在碱性淡水和工业废水中,HE(Ru,Mo)-MOFs 的 OER 过电位分别为 267 mV@10 mA cm-2 和 266 mV@10 mA cm-2,耐久性超过了商用 RuO2 催化剂。机理分析表明,高原子分散度有利于电荷快速转移和中间转化,有望成为能源转换的先进催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Quantification of Lithium Battery Fires in Internal Short Circuit Chain-Melting Temperature Depression in the Organic Layer of Two-Dimensional Perovskites High-Entropy Ultrathin Amorphous Metal–Organic Framework-Stabilized Ru(Mo) Dual-Atom Sites for Water Oxidation Photoremixing of Photosegregated Formamidinium/Cesium Lead Iodide/Bromide Thin Films under Pulsed Laser Excitation Kinetic Control over Disproportionation Stabilizes Wurster’s Blue Catholyte for Nonaqueous Redox Flow Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1