Aoyan Zeng , Yongju He , Mulan Qin , Chao Hu , Fei Huang , Jilong Qiu , Shuquan Liang , Yanyan Sun , Guozhao Fang
{"title":"Robust interface for O3-type layered cathode towards stable ether-based sodium-ion full batteries","authors":"Aoyan Zeng , Yongju He , Mulan Qin , Chao Hu , Fei Huang , Jilong Qiu , Shuquan Liang , Yanyan Sun , Guozhao Fang","doi":"10.1016/j.ensm.2024.103894","DOIUrl":null,"url":null,"abstract":"<div><div>Developing a robust cathode-electrolyte interface (CEI) is crucial for stable layered cathode in sodium-ion batteries (SIBs). A CEI based on ester electrolytes often exhibit poor stability and robustness, which cannot address the issues of structural collapse and material dissolution in layered cathodes. However, there are few reports on constructing a stable CEI for layered cathode based on ether electrolytes. Here we develop a robust CEI for O3-type cathode via DME solvent, which enables a long-term stability of full SIBs. The results indicate that unique decomposition process of DME yields favorable organic component (e.g. RCH<sub>2</sub>ONa) and high content of inorganic components (e.g. NaF and Na<sub>2</sub>CO<sub>3</sub>) in the CEI, which is quite different from ester electrolyte, improving Na<sup>+</sup> diffusion kinetic and interfacial stability. Notably, the O3-NaNi<sub>0.5</sub>Mn<sub>0.5</sub>O<sub>2</sub>||Na cell with the designed electrolyte demonstrates outstanding stability up to 500 cycles. Furthermore, the full cell exhibits remarkable cycling performance with a capacity retention of 85 % over 200 cycles. This work provides an opportunity for stable operation of layered cathode materials via inexpensive ether electrolytes.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"74 ","pages":"Article 103894"},"PeriodicalIF":18.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829724007207","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing a robust cathode-electrolyte interface (CEI) is crucial for stable layered cathode in sodium-ion batteries (SIBs). A CEI based on ester electrolytes often exhibit poor stability and robustness, which cannot address the issues of structural collapse and material dissolution in layered cathodes. However, there are few reports on constructing a stable CEI for layered cathode based on ether electrolytes. Here we develop a robust CEI for O3-type cathode via DME solvent, which enables a long-term stability of full SIBs. The results indicate that unique decomposition process of DME yields favorable organic component (e.g. RCH2ONa) and high content of inorganic components (e.g. NaF and Na2CO3) in the CEI, which is quite different from ester electrolyte, improving Na+ diffusion kinetic and interfacial stability. Notably, the O3-NaNi0.5Mn0.5O2||Na cell with the designed electrolyte demonstrates outstanding stability up to 500 cycles. Furthermore, the full cell exhibits remarkable cycling performance with a capacity retention of 85 % over 200 cycles. This work provides an opportunity for stable operation of layered cathode materials via inexpensive ether electrolytes.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.