Himanshu R Pandey, Amit Keshri, Neeraj Sinha, Uttam Kumar
{"title":"Neuroanatomical correlates of subjective tinnitus: insights from advanced cortical morphology analysis.","authors":"Himanshu R Pandey, Amit Keshri, Neeraj Sinha, Uttam Kumar","doi":"10.1093/cercor/bhae432","DOIUrl":null,"url":null,"abstract":"<p><p>Subjective tinnitus, characterized by the perception of phantom sounds in the absence of external stimuli, presents significant challenges in both audiology and neurology. Once thought to primarily involve aberrant neural activity within auditory pathways, it is now understood to engage a broader array of neuroanatomical structures. This study investigated the connections between auditory, cognitive, and sensory processing regions, which are crucial for unraveling the complex neurobiological basis of tinnitus. Using high-resolution T1-weighted magnetic resonance imaging, we compared 52 individuals with subjective tinnitus with 52 age-matched healthy controls, focusing on cerebral cortex features, including fractal dimensionality, gyrification, and sulcal depth. Covariate analyses were conducted to explore the relationships between tinnitus duration, Tinnitus Handicap Inventory scores, anxiety score, and neuroanatomical changes. We found significant alterations in key brain regions involved in sensory processing, cognition, and emotional regulation, including the insula, lateral occipital cortex, middle frontal gyrus, and superior parietal lobule. These neuroanatomical changes were strongly correlated with the severity and chronicity of tinnitus symptoms. Our findings reveal profound structural changes in the brain associated with subjective tinnitus, offering valuable insights into the condition's underlying mechanisms and providing a potential framework for guiding future research and therapeutic interventions.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae432","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Subjective tinnitus, characterized by the perception of phantom sounds in the absence of external stimuli, presents significant challenges in both audiology and neurology. Once thought to primarily involve aberrant neural activity within auditory pathways, it is now understood to engage a broader array of neuroanatomical structures. This study investigated the connections between auditory, cognitive, and sensory processing regions, which are crucial for unraveling the complex neurobiological basis of tinnitus. Using high-resolution T1-weighted magnetic resonance imaging, we compared 52 individuals with subjective tinnitus with 52 age-matched healthy controls, focusing on cerebral cortex features, including fractal dimensionality, gyrification, and sulcal depth. Covariate analyses were conducted to explore the relationships between tinnitus duration, Tinnitus Handicap Inventory scores, anxiety score, and neuroanatomical changes. We found significant alterations in key brain regions involved in sensory processing, cognition, and emotional regulation, including the insula, lateral occipital cortex, middle frontal gyrus, and superior parietal lobule. These neuroanatomical changes were strongly correlated with the severity and chronicity of tinnitus symptoms. Our findings reveal profound structural changes in the brain associated with subjective tinnitus, offering valuable insights into the condition's underlying mechanisms and providing a potential framework for guiding future research and therapeutic interventions.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.