Elinor G Sterner, Auden Cote-L'Heureux, Xyrus X Maurer-Alcalá, Laura A Katz
{"title":"Diverse genome structures among eukaryotes may have arisen in response to genetic conflict.","authors":"Elinor G Sterner, Auden Cote-L'Heureux, Xyrus X Maurer-Alcalá, Laura A Katz","doi":"10.1093/gbe/evae239","DOIUrl":null,"url":null,"abstract":"<p><p>In contrast to the typified view of genomes cycling only between haploidy and diploidy, there is evidence from across the tree of life of genome dynamics that alter both copy number (i.e. ploidy) and chromosome complements. Here we highlight examples of such processes, including endoreplication, aneuploidy, inheritance of extrachromosomal DNA, and chromatin extrusion. Synthesizing data on eukaryotic genome dynamics in diverse extant lineages suggests the possibility that such processes were present before the last eukaryotic common ancestor (LECA). While present in some prokaryotes, these features appear exaggerated in eukaryotes where they are regulated by eukaryote-specific innovations including the nucleus, complex cytoskeleton, and synaptonemal complex. Based on these observations, we propose a model by which genome conflict drove the transformation of genomes during eukaryogenesis: from the origin of eukaryotes (i.e. FECA) through the evolution of LECA.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae239","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In contrast to the typified view of genomes cycling only between haploidy and diploidy, there is evidence from across the tree of life of genome dynamics that alter both copy number (i.e. ploidy) and chromosome complements. Here we highlight examples of such processes, including endoreplication, aneuploidy, inheritance of extrachromosomal DNA, and chromatin extrusion. Synthesizing data on eukaryotic genome dynamics in diverse extant lineages suggests the possibility that such processes were present before the last eukaryotic common ancestor (LECA). While present in some prokaryotes, these features appear exaggerated in eukaryotes where they are regulated by eukaryote-specific innovations including the nucleus, complex cytoskeleton, and synaptonemal complex. Based on these observations, we propose a model by which genome conflict drove the transformation of genomes during eukaryogenesis: from the origin of eukaryotes (i.e. FECA) through the evolution of LECA.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.