Potential of ex vivo organotypic slice cultures in neuro-oncology.

IF 16.4 1区 医学 Q1 CLINICAL NEUROLOGY Neuro-oncology Pub Date : 2024-11-06 DOI:10.1093/neuonc/noae195
Ariane Steindl, Manuel Valiente
{"title":"Potential of ex vivo organotypic slice cultures in neuro-oncology.","authors":"Ariane Steindl, Manuel Valiente","doi":"10.1093/neuonc/noae195","DOIUrl":null,"url":null,"abstract":"<p><p>Over recent decades, in vitro and in vivo models have significantly advanced brain cancer research; however, each presents distinct challenges for accurately mimicking in situ conditions. In response, organotypic slice cultures have emerged as a promising model recapitulating precisely specific in vivo phenotypes through an ex vivo approach. Ex vivo organotypic brain slice models can integrate biological relevance and patient-specific variability early in drug discovery, thereby aiming for more precise treatment stratification. However, the challenges of obtaining representative fresh brain tissue, ensuring reproducibility, and maintaining essential central nervous system (CNS)-specific conditions reflecting the in situ situation over time have limited the direct application of ex vivo organotypic slice cultures in robust clinical trials. In this review, we explore the benefits and possible limitations of ex vivo organotypic brain slice cultures in neuro-oncological research. Additionally, we share insights from clinical experts in neuro-oncology on how to overcome these current limitations and improve the practical application of organotypic brain slice cultures beyond academic research.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noae195","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Over recent decades, in vitro and in vivo models have significantly advanced brain cancer research; however, each presents distinct challenges for accurately mimicking in situ conditions. In response, organotypic slice cultures have emerged as a promising model recapitulating precisely specific in vivo phenotypes through an ex vivo approach. Ex vivo organotypic brain slice models can integrate biological relevance and patient-specific variability early in drug discovery, thereby aiming for more precise treatment stratification. However, the challenges of obtaining representative fresh brain tissue, ensuring reproducibility, and maintaining essential central nervous system (CNS)-specific conditions reflecting the in situ situation over time have limited the direct application of ex vivo organotypic slice cultures in robust clinical trials. In this review, we explore the benefits and possible limitations of ex vivo organotypic brain slice cultures in neuro-oncological research. Additionally, we share insights from clinical experts in neuro-oncology on how to overcome these current limitations and improve the practical application of organotypic brain slice cultures beyond academic research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体外有机切片培养在神经肿瘤学中的潜力。
近几十年来,体外和体内模型极大地推动了脑癌研究的发展;然而,每种模型在精确模拟原位条件方面都面临着不同的挑战。有鉴于此,有机体切片培养已成为一种很有前途的模型,可通过体外方法精确再现特定的体内表型。体外有机脑切片模型可以在药物发现的早期将生物相关性和患者特异性结合起来,从而实现更精确的治疗分层。然而,在获取具有代表性的新鲜脑组织、确保可重复性以及长期保持反映原位情况的中枢神经系统(CNS)特异性基本条件等方面所面临的挑战,限制了体外器官切片培养在稳健的临床试验中的直接应用。在本综述中,我们将探讨体外有机脑切片培养在神经肿瘤研究中的优势和可能存在的局限性。此外,我们还分享了神经肿瘤学临床专家对如何克服当前这些局限性并提高有机体脑切片培养在学术研究之外的实际应用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuro-oncology
Neuro-oncology 医学-临床神经学
CiteScore
27.20
自引率
6.30%
发文量
1434
审稿时长
3-8 weeks
期刊介绍: Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field. The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.
期刊最新文献
Consensus recommendations for an integrated diagnostic approach to peripheral nerve sheath tumors arising in the setting of Neurofibromatosis type 1 (NF1). Validation and next-generation update of a DNA methylation-based recurrence predictor for meningioma: a multicenter prospective study. Potential of ex vivo organotypic slice cultures in neuro-oncology. Raman-based machine-learning platform reveals unique metabolic differences between IDHmut and IDHwt glioma. Disturbance in cerebral blood microcirculation and hypoxic-ischemic microenvironment are associated with the development of brain metastasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1