Identification of Urinary Metabolic Biomarkers for H3K27M Mutation Diagnosis in Brainstem Gliomas.

IF 16.4 1区 医学 Q1 CLINICAL NEUROLOGY Neuro-oncology Pub Date : 2025-02-14 DOI:10.1093/neuonc/noaf038
Xiaoou Li, Wei Sun, Zhengguang Guo, Feng Qi, Tian Li, Yujin Wang, Mingxin Zhang, Aiwei Wang, Zhuang Jiang, Luyang Xie, Yiying Mai, Yi Wang, Zhen Wu, Nan Ji, Yang Zhang, Liwei Zhang
{"title":"Identification of Urinary Metabolic Biomarkers for H3K27M Mutation Diagnosis in Brainstem Gliomas.","authors":"Xiaoou Li, Wei Sun, Zhengguang Guo, Feng Qi, Tian Li, Yujin Wang, Mingxin Zhang, Aiwei Wang, Zhuang Jiang, Luyang Xie, Yiying Mai, Yi Wang, Zhen Wu, Nan Ji, Yang Zhang, Liwei Zhang","doi":"10.1093/neuonc/noaf038","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Brainstem gliomas (BSGs) harboring a histone 3 lysine27-to-methionine (H3K27M) mutation represent one of the deadliest brain tumors with a dismal prognosis, as they exhibit a much worse response to therapy compared to the wildtype BSGs. Early non-invasive recognition of the H3K27M mutation is paramount for clinical decision-making in treating BSGs.</p><p><strong>Methods: </strong>Plasma and urine samples were prospectively collected from BSG patients before biopsy or surgical resection and were chronologically divided into discovery, test, and validation cohorts. Utilizing the discovery and test cohort samples, an untargeted metabolomic strategy was exploited to identify candidate metabolite biomarkers, related to the H3K27M mutation. The candidate biomarkers were validated in the validation cohort with a targeted metabolomic method.</p><p><strong>Results: </strong>Differential metabolomic profiles were detected between the H3K27M-mutant and wild-type BSGs in both the plasma and urine, the metabolomic changes were more dramatic in urine than in plasma. After rigorous screening for candidate biomarkers and validation with a targeted metabolomic approach, three metabolites, nomilin, Lys-Leu, and hawkinsin, emerged as significantly elevated biomarkers in H3K27M-mutant BSG urine samples. The biomarker panel combining the three metabolites had a diagnostic area under the curve (AUC) of approximately 75%. Furthermore, the biomarker panel improved the prediction accuracy of radiomics/clinical models to an AUC value high as 93.38%.</p><p><strong>Conclusions: </strong>A urinary metabolite biomarker panel that exhibited high accuracy for non-invasive prediction of the H3K27M mutation status in BSG patients was identified. This panel has the potential to improve the predictive performance of current radiomics models or clinical features.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noaf038","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Brainstem gliomas (BSGs) harboring a histone 3 lysine27-to-methionine (H3K27M) mutation represent one of the deadliest brain tumors with a dismal prognosis, as they exhibit a much worse response to therapy compared to the wildtype BSGs. Early non-invasive recognition of the H3K27M mutation is paramount for clinical decision-making in treating BSGs.

Methods: Plasma and urine samples were prospectively collected from BSG patients before biopsy or surgical resection and were chronologically divided into discovery, test, and validation cohorts. Utilizing the discovery and test cohort samples, an untargeted metabolomic strategy was exploited to identify candidate metabolite biomarkers, related to the H3K27M mutation. The candidate biomarkers were validated in the validation cohort with a targeted metabolomic method.

Results: Differential metabolomic profiles were detected between the H3K27M-mutant and wild-type BSGs in both the plasma and urine, the metabolomic changes were more dramatic in urine than in plasma. After rigorous screening for candidate biomarkers and validation with a targeted metabolomic approach, three metabolites, nomilin, Lys-Leu, and hawkinsin, emerged as significantly elevated biomarkers in H3K27M-mutant BSG urine samples. The biomarker panel combining the three metabolites had a diagnostic area under the curve (AUC) of approximately 75%. Furthermore, the biomarker panel improved the prediction accuracy of radiomics/clinical models to an AUC value high as 93.38%.

Conclusions: A urinary metabolite biomarker panel that exhibited high accuracy for non-invasive prediction of the H3K27M mutation status in BSG patients was identified. This panel has the potential to improve the predictive performance of current radiomics models or clinical features.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuro-oncology
Neuro-oncology 医学-临床神经学
CiteScore
27.20
自引率
6.30%
发文量
1434
审稿时长
3-8 weeks
期刊介绍: Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field. The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.
期刊最新文献
Targeting PGE2 mediated senescent neuron improves tumour therapy. Unveiling spatial heterogeneity in medulloblastoma: a multi-omics analysis of cellular state and geographical organization. Multi-Site Retrospective Analysis of Diffusion and Perfusion MRI Correlates to Glioma Characteristics Derived from Radio-Pathomic Maps. The proteomic landscape of diffuse midline glioma highlights the therapeutic potential of non-histone protein methyltransferases. Identification of Urinary Metabolic Biomarkers for H3K27M Mutation Diagnosis in Brainstem Gliomas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1