{"title":"Rethinking Nonlinear Instrumental Variable Models through Prediction Validity.","authors":"Chunxiao Li, Cynthia Rudin, Tyler H McCormick","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Instrumental variables (IV) are widely used in the social and health sciences in situations where a researcher would like to measure a causal effect but cannot perform an experiment. For valid causal inference in an IV model, there must be external (exogenous) variation that (i) has a sufficiently large impact on the variable of interest (called the <i>relevance assumption</i>) and where (ii) the only pathway through which the external variation impacts the outcome is via the variable of interest (called the <i>exclusion restriction</i>). For statistical inference, researchers must also make assumptions about the functional form of the relationship between the three variables. Current practice assumes (i) and (ii) are met, then postulates a functional form with limited input from the data. In this paper, we describe a framework that leverages machine learning to validate these typically unchecked but consequential assumptions in the IV framework, providing the researcher empirical evidence about the quality of the instrument given the data at hand. Central to the proposed approach is the idea of <i>prediction validity</i>. Prediction validity checks that error terms - which should be independent from the instrument - cannot be modeled with machine learning any better than a model that is identically zero. We use prediction validity to develop both one-stage and two-stage approaches for IV, and demonstrate their performance on an example relevant to climate change policy.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539950/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Instrumental variables (IV) are widely used in the social and health sciences in situations where a researcher would like to measure a causal effect but cannot perform an experiment. For valid causal inference in an IV model, there must be external (exogenous) variation that (i) has a sufficiently large impact on the variable of interest (called the relevance assumption) and where (ii) the only pathway through which the external variation impacts the outcome is via the variable of interest (called the exclusion restriction). For statistical inference, researchers must also make assumptions about the functional form of the relationship between the three variables. Current practice assumes (i) and (ii) are met, then postulates a functional form with limited input from the data. In this paper, we describe a framework that leverages machine learning to validate these typically unchecked but consequential assumptions in the IV framework, providing the researcher empirical evidence about the quality of the instrument given the data at hand. Central to the proposed approach is the idea of prediction validity. Prediction validity checks that error terms - which should be independent from the instrument - cannot be modeled with machine learning any better than a model that is identically zero. We use prediction validity to develop both one-stage and two-stage approaches for IV, and demonstrate their performance on an example relevant to climate change policy.
工具变量(IV)在社会科学和健康科学中被广泛应用于研究人员想要测量因果效应但又无法进行实验的情况。要在 IV 模型中进行有效的因果推断,必须存在以下外部(外生)变量:(i) 对相关变量有足够大的影响(称为相关性假设);(ii) 外部变量影响结果的唯一途径是通过相关变量(称为排除限制)。为了进行统计推断,研究人员还必须对这三个变量之间关系的函数形式做出假设。目前的做法是先假设满足(i)和(ii),然后在数据输入有限的情况下假设函数形式。在本文中,我们描述了一个框架,该框架利用机器学习来验证 IV 框架中这些通常未被检查但却具有重要意义的假设,从而为研究人员提供有关手头数据下工具质量的经验证据。预测有效性是所提方法的核心。预测有效性检验了误差项(应独立于工具)的机器学习建模效果是否优于同为零的模型。我们利用预测有效性开发了单阶段和双阶段 IV 方法,并在一个与气候变化政策相关的例子中展示了它们的性能。
期刊介绍:
The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.
JMLR has a commitment to rigorous yet rapid reviewing.
JMLR seeks previously unpublished papers on machine learning that contain:
new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;
experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;
accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;
formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;
development of new analytical frameworks that advance theoretical studies of practical learning methods;
computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.