Peng Sun , Dongpan Zhao , Qingxin Chen , Xinyao Yu , Ning Zhu
{"title":"Distributionally robust optimization for pre-disaster facility location problem with 3D printing","authors":"Peng Sun , Dongpan Zhao , Qingxin Chen , Xinyao Yu , Ning Zhu","doi":"10.1016/j.tre.2024.103844","DOIUrl":null,"url":null,"abstract":"<div><div>The ongoing advancement of 3D printing technology provides an innovative approach to addressing challenges in disaster relief operations. By utilizing a variety of printing materials, 3D printers can produce essential disaster relief resources needed for disaster relief, effectively satisfying the varied demands that arise after disasters. This paper examines the joint optimization of pre-disaster and post-disaster humanitarian operations. Given the significant unpredictability of natural disasters, we introduce a two-stage distributionally robust optimization model to tackle the uncertainty in the demand for various relief resources. The first stage of the model involves decisions related to pre-disaster facility location, 3D printer deployment, and resource allocation. The second stage model addresses the post-disaster rescue activities, including decisions on the production and transportation decisions of relief resources. To address demand uncertainty, we propose an ambiguity set using the Wasserstein metric and reformulate the two-stage distributionally robust optimization model into a tractable formulation. To solve this problem, we employ a Benders decomposition algorithm with an acceleration strategy. The performance of our proposed model and algorithm is evaluated via a real-world case. Numerical experiments reveal that our distributionally robust optimization model outperforms the benchmark model across various metrics. Additionally, we conduct a series of effect analyses and provide managerial insights for decision-makers involved in disaster relief operations.</div></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"193 ","pages":"Article 103844"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554524004356","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The ongoing advancement of 3D printing technology provides an innovative approach to addressing challenges in disaster relief operations. By utilizing a variety of printing materials, 3D printers can produce essential disaster relief resources needed for disaster relief, effectively satisfying the varied demands that arise after disasters. This paper examines the joint optimization of pre-disaster and post-disaster humanitarian operations. Given the significant unpredictability of natural disasters, we introduce a two-stage distributionally robust optimization model to tackle the uncertainty in the demand for various relief resources. The first stage of the model involves decisions related to pre-disaster facility location, 3D printer deployment, and resource allocation. The second stage model addresses the post-disaster rescue activities, including decisions on the production and transportation decisions of relief resources. To address demand uncertainty, we propose an ambiguity set using the Wasserstein metric and reformulate the two-stage distributionally robust optimization model into a tractable formulation. To solve this problem, we employ a Benders decomposition algorithm with an acceleration strategy. The performance of our proposed model and algorithm is evaluated via a real-world case. Numerical experiments reveal that our distributionally robust optimization model outperforms the benchmark model across various metrics. Additionally, we conduct a series of effect analyses and provide managerial insights for decision-makers involved in disaster relief operations.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.