Enhanced characteristic equation method for single-stage absorption heat pumps

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Refrigeration-revue Internationale Du Froid Pub Date : 2024-10-18 DOI:10.1016/j.ijrefrig.2024.09.028
Jan Albers
{"title":"Enhanced characteristic equation method for single-stage absorption heat pumps","authors":"Jan Albers","doi":"10.1016/j.ijrefrig.2024.09.028","DOIUrl":null,"url":null,"abstract":"<div><div>The method of characteristic equations aims to describe the part-load behavior of sorption heat pumps and chillers as well as heat transformers as simply as possible but yet still accurately. Based on an approach by T. Furukawa for heat transformers, the method was further developed by F. Ziegler and others for absorption heat pumps and generalized for application in multistage processes. Clever simplifications were made, to represent the cooling capacity <span><math><mrow><mspace></mspace><msub><mover><mi>Q</mi><mo>˙</mo></mover><mi>E</mi></msub></mrow></math></span> of absorption chillers with a characteristic temperature difference <span><math><mrow><mspace></mspace><mstyle><mi>Δ</mi></mstyle><mstyle><mi>Δ</mi></mstyle><mi>t</mi></mrow></math></span> as a simple linear equation <span><math><mrow><mspace></mspace><msub><mover><mi>Q</mi><mo>˙</mo></mover><mi>E</mi></msub><mo>=</mo><msub><mi>s</mi><mi>E</mi></msub><mo>·</mo><mrow><mo>(</mo><mstyle><mi>Δ</mi></mstyle><mstyle><mi>Δ</mi></mstyle><mi>t</mi><mo>−</mo><mstyle><mi>Δ</mi></mstyle><mstyle><mi>Δ</mi></mstyle><msub><mi>t</mi><mrow><mi>min</mi><mo>,</mo><mi>E</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. In <span><math><mrow><mspace></mspace><mstyle><mi>Δ</mi></mstyle><mstyle><mi>Δ</mi></mstyle><mi>t</mi></mrow></math></span>, the average hot, cooling, and chilled water temperatures are combined, and the slope and loss parameters, <span><math><mrow><mspace></mspace><msub><mi>s</mi><mi>E</mi></msub></mrow></math></span> and <span><math><mrow><mspace></mspace><mstyle><mi>Δ</mi></mstyle><mstyle><mi>Δ</mi></mstyle><msub><mi>t</mi><mrow><mi>min</mi><mo>,</mo><mi>E</mi></mrow></msub></mrow></math></span> are constant. However, in practical applications of this established method, inconsistencies arise. For example, the calculated slope parameter <span><math><mrow><mspace></mspace><msub><mi>s</mi><mi>E</mi></msub></mrow></math></span> does not match the slope when plotting simulated or measured cooling capacities against <span><math><mrow><mspace></mspace><mstyle><mi>Δ</mi></mstyle><mstyle><mi>Δ</mi></mstyle><mi>t</mi></mrow></math></span>. Furthermore, the loss parameter <span><math><mrow><mspace></mspace><mstyle><mi>Δ</mi></mstyle><mstyle><mi>Δ</mi></mstyle><msub><mi>t</mi><mrow><mi>min</mi><mo>,</mo><mi>E</mi></mrow></msub></mrow></math></span> is actually not constant.</div><div>In this work a more precise formulation of the characteristic equation is derived which takes into account that the solution entering the absorber and desorber is generally superheated or subcooled. By means of a domain-wise heat transfer calculation, these effects can be implemented into the method and explain the above mentioned inconsistencies. The new formulation allows for explicit consideration of different heat exchanger designs and cooling water configurations. No iterations or regression analyses are required. Thus, the calculation method can be easily implemented into industrial controllers e.g. for the model predictive control of absorption chillers and heat pumps.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"169 ","pages":"Pages 124-139"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724003402","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The method of characteristic equations aims to describe the part-load behavior of sorption heat pumps and chillers as well as heat transformers as simply as possible but yet still accurately. Based on an approach by T. Furukawa for heat transformers, the method was further developed by F. Ziegler and others for absorption heat pumps and generalized for application in multistage processes. Clever simplifications were made, to represent the cooling capacity Q˙E of absorption chillers with a characteristic temperature difference ΔΔt as a simple linear equation Q˙E=sE·(ΔΔtΔΔtmin,E). In ΔΔt, the average hot, cooling, and chilled water temperatures are combined, and the slope and loss parameters, sE and ΔΔtmin,E are constant. However, in practical applications of this established method, inconsistencies arise. For example, the calculated slope parameter sE does not match the slope when plotting simulated or measured cooling capacities against ΔΔt. Furthermore, the loss parameter ΔΔtmin,E is actually not constant.
In this work a more precise formulation of the characteristic equation is derived which takes into account that the solution entering the absorber and desorber is generally superheated or subcooled. By means of a domain-wise heat transfer calculation, these effects can be implemented into the method and explain the above mentioned inconsistencies. The new formulation allows for explicit consideration of different heat exchanger designs and cooling water configurations. No iterations or regression analyses are required. Thus, the calculation method can be easily implemented into industrial controllers e.g. for the model predictive control of absorption chillers and heat pumps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单级吸收式热泵的增强特性方程法
特征方程法旨在尽可能简单但准确地描述吸收式热泵和冷却器以及热变压器的部分负荷行为。该方法以 T. Furukawa 用于热变压器的方法为基础,由 F. Ziegler 等人针对吸收式热泵进一步开发,并推广应用于多级工艺中。通过巧妙的简化,吸收式制冷机的制冷量 Q˙E 在特性温差 ΔΔt 的情况下,可以用一个简单的线性方程来表示 Q˙E=sE-(ΔΔt-ΔΔtmin,E)。在 ΔΔt 中,热水、冷却水和冷冻水的平均温度合并计算,斜率和损耗参数 sE 和 ΔΔtmin,E 保持不变。然而,在实际应用这种既定方法时,会出现不一致的情况。例如,在绘制模拟或测量的冷却能力与 ΔΔt 的关系图时,计算出的斜率参数 sE 与斜率不一致。此外,损耗参数ΔΔtmin,E 实际上并不是恒定的。在这项工作中,考虑到进入吸收器和解吸塔的溶液通常是过热或过冷的,因此得出了一个更精确的特性方程公式。通过全域传热计算,可以将这些影响纳入计算方法,并解释上述不一致之处。新方法可以明确考虑不同的热交换器设计和冷却水配置。无需进行迭代或回归分析。因此,该计算方法可以很容易地应用到工业控制器中,例如用于吸收式冷却器和热泵的模型预测控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
期刊最新文献
Editorial Board Data-enhanced convolutional network based on air conditioning system start/stop time prediction Start-up investigation and heat transfer enhancement analysis of a loop thermosyphon with biomimetic honeycomb-channel evaporator Optimal Intermediate Pressure Investigation in a CO₂ Transcritical Distributed Compression Refrigeration Cycle Thermodynamic and technoeconomic limitations of Brayton refrigeration for air conditioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1