{"title":"Thermodynamic and technoeconomic limitations of Brayton refrigeration for air conditioning","authors":"Jordan D. Kocher","doi":"10.1016/j.ijrefrig.2024.11.013","DOIUrl":null,"url":null,"abstract":"<div><div>With global cooling demand increasing, there is a need for refrigeration cycles that use low global warming potential (GWP) refrigerants. Researchers have flirted with the idea of using the Brayton cycle for refrigeration over the years, but it has yet to prove competitive in performance or cost when compared to the widely used vapor compression cycle. The recent development of an electrochemical Brayton refrigeration cycle has renewed interest in the thermodynamics of Brayton refrigeration. This work provides a parametric study of the COP of a Brayton cycle air conditioner (either mechanical or electrochemical in nature) as a function of the characteristics of the cycle components (thermal conductances and isentropic efficiencies). When the isentropic efficiencies of the adiabatic components (i.e., the compressor and turbine in the mechanical Brayton cycle) are 90 %, the cycle COP is limited to a value of ∼1. Furthermore, a thermodynamic comparison to the vapor compression cycle reveals that the Brayton refrigeration cycle generates ∼8 × more entropy, and that the thermodynamic favorability of the vapor compression cycle is due to the presence of phase change.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"169 ","pages":"Pages 418-428"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724003979","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With global cooling demand increasing, there is a need for refrigeration cycles that use low global warming potential (GWP) refrigerants. Researchers have flirted with the idea of using the Brayton cycle for refrigeration over the years, but it has yet to prove competitive in performance or cost when compared to the widely used vapor compression cycle. The recent development of an electrochemical Brayton refrigeration cycle has renewed interest in the thermodynamics of Brayton refrigeration. This work provides a parametric study of the COP of a Brayton cycle air conditioner (either mechanical or electrochemical in nature) as a function of the characteristics of the cycle components (thermal conductances and isentropic efficiencies). When the isentropic efficiencies of the adiabatic components (i.e., the compressor and turbine in the mechanical Brayton cycle) are 90 %, the cycle COP is limited to a value of ∼1. Furthermore, a thermodynamic comparison to the vapor compression cycle reveals that the Brayton refrigeration cycle generates ∼8 × more entropy, and that the thermodynamic favorability of the vapor compression cycle is due to the presence of phase change.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.