ZnO site-occupying effect assisted regulation of nanoporous carbon network to enhance capacitive deionization for copper ions removal

IF 8.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL Desalination Pub Date : 2024-11-01 DOI:10.1016/j.desal.2024.118264
Yang Zhao , Fei Wang , Yufeng Yan , Shuangfeng Fang , Baihang Cai , Jin Huang , Xinru Gong , Jian Hu , Li Liu , Hengyuan Hu , Yudan Zhang , Ziqi Cai , Qing Yan , Yong Wang , Liang Qiao , Minglei Yan
{"title":"ZnO site-occupying effect assisted regulation of nanoporous carbon network to enhance capacitive deionization for copper ions removal","authors":"Yang Zhao ,&nbsp;Fei Wang ,&nbsp;Yufeng Yan ,&nbsp;Shuangfeng Fang ,&nbsp;Baihang Cai ,&nbsp;Jin Huang ,&nbsp;Xinru Gong ,&nbsp;Jian Hu ,&nbsp;Li Liu ,&nbsp;Hengyuan Hu ,&nbsp;Yudan Zhang ,&nbsp;Ziqi Cai ,&nbsp;Qing Yan ,&nbsp;Yong Wang ,&nbsp;Liang Qiao ,&nbsp;Minglei Yan","doi":"10.1016/j.desal.2024.118264","DOIUrl":null,"url":null,"abstract":"<div><div>Capacitive deionization (CDI) technology, based on the electric field ion capture mechanism, holds significant application prospects for purifying copper ions (Cu<sup>2+</sup>) from industrial wastewater. The development of electrode materials is crucial for enhancing capacitive Cu<sup>2+</sup> removal. Herein, the three-dimensional nanoporous carbon network is prepared from agricultural waste rice husk using basic zinc carbonate as the pyrolytic activator. It is found that the ZnO site-occupying effect, stemming from the pyrolysis activator, exerts a pronounced regulatory influence on the porous structure of carbon network. The carbon electrode exhibits a satisfactory specific capacitance of 256.2 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup>. More importantly, the assembled symmetrical CDI cell demonstrates an excellent electrochemical adsorption capacity of 60.5 mg g<sup>−1</sup> for Cu<sup>2+</sup>. Such exceptional capacitive deionization performance can be attributed to the synergistic effect of the electrochemical double-layer and electrochemical reduction during the adsorption process of Cu<sup>2+</sup>. Thus, this research offers a promising strategy for efficient wastewater treatment.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"594 ","pages":"Article 118264"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424009755","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Capacitive deionization (CDI) technology, based on the electric field ion capture mechanism, holds significant application prospects for purifying copper ions (Cu2+) from industrial wastewater. The development of electrode materials is crucial for enhancing capacitive Cu2+ removal. Herein, the three-dimensional nanoporous carbon network is prepared from agricultural waste rice husk using basic zinc carbonate as the pyrolytic activator. It is found that the ZnO site-occupying effect, stemming from the pyrolysis activator, exerts a pronounced regulatory influence on the porous structure of carbon network. The carbon electrode exhibits a satisfactory specific capacitance of 256.2 F g−1 at 0.5 A g−1. More importantly, the assembled symmetrical CDI cell demonstrates an excellent electrochemical adsorption capacity of 60.5 mg g−1 for Cu2+. Such exceptional capacitive deionization performance can be attributed to the synergistic effect of the electrochemical double-layer and electrochemical reduction during the adsorption process of Cu2+. Thus, this research offers a promising strategy for efficient wastewater treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化锌占位效应辅助调节纳米多孔碳网络,提高电容式去离子法去除铜离子的效果
基于电场离子捕获机制的电容式去离子(CDI)技术在净化工业废水中的铜离子(Cu2+)方面具有广阔的应用前景。电极材料的开发对于提高电容式 Cu2+ 去除率至关重要。本文以碱式碳酸锌为热解活化剂,利用农业废弃稻壳制备了三维纳米多孔碳网络。研究发现,热解活化剂产生的氧化锌占位效应对碳网络的多孔结构产生了明显的调节作用。在 0.5 A g-1 的条件下,碳电极表现出令人满意的 256.2 F g-1 比电容。更重要的是,组装好的对称 CDI 电池对 Cu2+ 的电化学吸附容量高达 60.5 mg g-1。这种优异的电容去离子性能可归因于吸附 Cu2+ 过程中电化学双层和电化学还原的协同效应。因此,这项研究为高效处理废水提供了一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Desalination
Desalination 工程技术-工程:化工
CiteScore
14.60
自引率
20.20%
发文量
619
审稿时长
41 days
期刊介绍: Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area. The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes. By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.
期刊最新文献
Preparation of fully coated PEDOT: PSS film on MXene for high reliability capacitive deionization Echelon extraction of valuable components from salt lake brine substrate Efficient removal of uranium and sulfate in acid contaminated groundwater by flow electrode capacitive deionization Assessment of a pilot continuous freezing desalination system with vacuum-assisted brine extraction Reverse osmosis process combining energy consumption analysis and mass transfer in the concentration of lithium-enriched brine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1