{"title":"Enhancing commercial building resiliency through microgrids with distributed energy sources and battery energy storage systems","authors":"","doi":"10.1016/j.enbuild.2024.114980","DOIUrl":null,"url":null,"abstract":"<div><div>Resilience analysis is gaining focus, but no extensive research exists for commercial buildings. This research presents the results of a novel analysis of the resiliency in commercial buildings by examining the relationship between electric microgrids, Distributed Energy Resources (DERs), and Battery Energy Storage Systems (BESS). As energy systems face increasing challenges, including extreme weather events and grid vulnerabilities, integrating microgrids, DERs, and BESS has emerged as a promising solution to strengthen the resilience of commercial buildings. Microgrids can harness renewable energy sources and reduce environmental impacts when integrated with DERs. Most literature studies focus on residential or commercial buildings with peak-valley tariffs and simplified electrical market models. In contrast, this study focuses on BESS’ pivotal role in DER output and ensuring uninterrupted power during grid disruptions and presents an innovative approach to analyzing resilience in commercial building microgrids and an economic optimization of commercial building microgrids with Time of Use tariffs utilizing DERS and BESS. The analysis includes the technical aspects of BESS integration and control strategies that optimize their operation. It also studies the economic and environmental benefits of microgrids, DERs, and BESS, focusing on cost savings, greenhouse gas emission reductions, and grid support services.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037877882401096X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Resilience analysis is gaining focus, but no extensive research exists for commercial buildings. This research presents the results of a novel analysis of the resiliency in commercial buildings by examining the relationship between electric microgrids, Distributed Energy Resources (DERs), and Battery Energy Storage Systems (BESS). As energy systems face increasing challenges, including extreme weather events and grid vulnerabilities, integrating microgrids, DERs, and BESS has emerged as a promising solution to strengthen the resilience of commercial buildings. Microgrids can harness renewable energy sources and reduce environmental impacts when integrated with DERs. Most literature studies focus on residential or commercial buildings with peak-valley tariffs and simplified electrical market models. In contrast, this study focuses on BESS’ pivotal role in DER output and ensuring uninterrupted power during grid disruptions and presents an innovative approach to analyzing resilience in commercial building microgrids and an economic optimization of commercial building microgrids with Time of Use tariffs utilizing DERS and BESS. The analysis includes the technical aspects of BESS integration and control strategies that optimize their operation. It also studies the economic and environmental benefits of microgrids, DERs, and BESS, focusing on cost savings, greenhouse gas emission reductions, and grid support services.
期刊介绍:
An international journal devoted to investigations of energy use and efficiency in buildings
Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.