{"title":"Investigation of nonlinear buckling of FGM shells using a high-order finite continuation approach","authors":"","doi":"10.1016/j.finel.2024.104273","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the buckling behavior of cylindrical shells composed of Functionally Graded Materials (FGMs) when subjected to axial compression, challenging conventional assumptions regarding the influence of Poisson’s effect in homogeneous materials. To address this, we utilize a numerical approach employing the Asymptotic Numerical Method (ANM). Contrary to the expected linear pre-buckling behavior associated with a zero Poisson’s ratio, our findings reveal significant non-linearity in the response of FGM structures, emphasizing the influence of additional non-linear factors inherent in the behavior of advanced composites. Through an extensive numerical analysis conducted using a customized Matlab code, we examine the buckling and post-buckling characteristics of FGM shells with varying surface compositions, particularly focusing on configurations incorporating <span><math><mrow><msub><mrow><mi>Al</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> and <span><math><mi>Al</mi></math></span> on the upper surface. To elucidate our findings, we present numerical examples comparing two FGM scenarios (<span><math><mrow><msub><mrow><mi>Al</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>/</mo><mi>Al</mi></mrow></math></span> and <span><math><mrow><mi>Al</mi><mo>/</mo><msub><mrow><mi>Al</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>) in terms of critical buckling and FGM distribution. Additionally, we validate our results by employing the commercial software Abaqus with Riks-based finite element method and Newton–Raphson solver.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X24001677","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the buckling behavior of cylindrical shells composed of Functionally Graded Materials (FGMs) when subjected to axial compression, challenging conventional assumptions regarding the influence of Poisson’s effect in homogeneous materials. To address this, we utilize a numerical approach employing the Asymptotic Numerical Method (ANM). Contrary to the expected linear pre-buckling behavior associated with a zero Poisson’s ratio, our findings reveal significant non-linearity in the response of FGM structures, emphasizing the influence of additional non-linear factors inherent in the behavior of advanced composites. Through an extensive numerical analysis conducted using a customized Matlab code, we examine the buckling and post-buckling characteristics of FGM shells with varying surface compositions, particularly focusing on configurations incorporating and on the upper surface. To elucidate our findings, we present numerical examples comparing two FGM scenarios ( and ) in terms of critical buckling and FGM distribution. Additionally, we validate our results by employing the commercial software Abaqus with Riks-based finite element method and Newton–Raphson solver.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.