Elastocaloric effect and magnetic properties of rare earth Ce-doped Cu-Al-Mn alloy

IF 2.1 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Solid State Communications Pub Date : 2024-10-30 DOI:10.1016/j.ssc.2024.115745
Fengnan Yang, Shulei Zhao, Buyang Ma, Yan Liang, Shuotong Zong, Yan Zhang, Yafei Kuang, Wenfeng Liu, Fenghua Chen
{"title":"Elastocaloric effect and magnetic properties of rare earth Ce-doped Cu-Al-Mn alloy","authors":"Fengnan Yang,&nbsp;Shulei Zhao,&nbsp;Buyang Ma,&nbsp;Yan Liang,&nbsp;Shuotong Zong,&nbsp;Yan Zhang,&nbsp;Yafei Kuang,&nbsp;Wenfeng Liu,&nbsp;Fenghua Chen","doi":"10.1016/j.ssc.2024.115745","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, the elastocaloric and magnetic properties of Cu<sub>70</sub>Al<sub>20.5</sub>Mn<sub>9.5-<em>x</em></sub>Ce<sub><em>x</em></sub> (<em>x</em> = 0, 0.3, 0.6, 0.9) alloy are systematically studied. The resistance-temperature curve (R-T) revealed that the phase transition temperature range of the alloy is below room temperature (about 230–272 K) and increases as the Ce content increases. In addition, the thermomagnetic curve (M-T) and isothermal magnetization curve (M − H) suggested that the alloy exhibits weak magnetism. The X-ray diffraction pattern shows that the alloy is a single β phase at room temperature. The stress-strain curve shows that with the increase of Ce content, the overall strain of the alloy tends to decrease, indicating that the addition of Ce will increase the compressive modulus of the alloy. The test of elastocaloric properties shows that the maximum adiabatic temperature change of the alloy initially decreases and then increases as the Ce content rises. When the Ce content is 0.3, it exhibits an adiabatic temperature change of 7.4 K under the stress unloading of 500 MPa. The temperature-time cycle test shows that Cu<sub>70</sub>Al<sub>20.5</sub>Mn<sub>9.2</sub>Ce<sub>0.3</sub> has good elastocaloric cycle stability.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"395 ","pages":"Article 115745"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824003223","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, the elastocaloric and magnetic properties of Cu70Al20.5Mn9.5-xCex (x = 0, 0.3, 0.6, 0.9) alloy are systematically studied. The resistance-temperature curve (R-T) revealed that the phase transition temperature range of the alloy is below room temperature (about 230–272 K) and increases as the Ce content increases. In addition, the thermomagnetic curve (M-T) and isothermal magnetization curve (M − H) suggested that the alloy exhibits weak magnetism. The X-ray diffraction pattern shows that the alloy is a single β phase at room temperature. The stress-strain curve shows that with the increase of Ce content, the overall strain of the alloy tends to decrease, indicating that the addition of Ce will increase the compressive modulus of the alloy. The test of elastocaloric properties shows that the maximum adiabatic temperature change of the alloy initially decreases and then increases as the Ce content rises. When the Ce content is 0.3, it exhibits an adiabatic temperature change of 7.4 K under the stress unloading of 500 MPa. The temperature-time cycle test shows that Cu70Al20.5Mn9.2Ce0.3 has good elastocaloric cycle stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂稀土 Ce 的铜铝锰合金的弹性效应和磁性能
本研究系统研究了 Cu70Al20.5Mn9.5-xCex(x = 0、0.3、0.6、0.9)合金的弹性和磁性能。电阻-温度曲线(R-T)显示,合金的相变温度范围低于室温(约 230-272 K),并随着 Ce 含量的增加而升高。此外,热磁曲线(M-T)和等温磁化曲线(M - H)表明合金具有弱磁性。X 射线衍射图样显示,合金在室温下为单一的 β 相。应力-应变曲线显示,随着 Ce 含量的增加,合金的整体应变呈下降趋势,这表明 Ce 的加入会增加合金的压缩模量。弹性热稳定性测试表明,随着 Ce 含量的增加,合金的最大绝热温度变化先减小后增大。当 Ce 含量为 0.3 时,在 500 兆帕的卸载应力下,绝热温度变化为 7.4 K。温度-时间循环测试表明,Cu70Al20.5Mn9.2Ce0.3 具有良好的弹性热循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Communications
Solid State Communications 物理-物理:凝聚态物理
CiteScore
3.40
自引率
4.80%
发文量
287
审稿时长
51 days
期刊介绍: Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged. A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions. The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.
期刊最新文献
Tailoring structural, morphological, and magnetic properties of Sr0.54Ca0.46Fe6.5-xNixAl5.5O19 hexaferrites via Ni substitution Tuning band gap and improving optoelectronic properties of lead-free halide perovskites FrMI3 (M = Ge, Sn) under hydrostatic pressure The theoretical investigation of the electronic and optical properties of Fe-doped anatase TiO2 Chemical and structural features of spin-coated magnesium oxide (MgO) and its impact on the barrier parameters and current conduction process of Au/undoped-InP Schottky contact as an interfacial layer High pressure and high temperature synthesis of a new boron carbide phase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1