Efficient and stable hydrogen evolution and antibiotic degradation in all-pH-scale water/alkaline seawater using Fe-Co phosphide hollow nanocages fabricated from metallurgical solid waste

IF 13.1 1区 化学 Q1 Energy Journal of Energy Chemistry Pub Date : 2024-10-22 DOI:10.1016/j.jechem.2024.09.064
Zekun Zhao , Suqin Li , Yongkui Li , Qingqing Xia , Haiping Lei , Hao Zhang , Shuqiang Jiao
{"title":"Efficient and stable hydrogen evolution and antibiotic degradation in all-pH-scale water/alkaline seawater using Fe-Co phosphide hollow nanocages fabricated from metallurgical solid waste","authors":"Zekun Zhao ,&nbsp;Suqin Li ,&nbsp;Yongkui Li ,&nbsp;Qingqing Xia ,&nbsp;Haiping Lei ,&nbsp;Hao Zhang ,&nbsp;Shuqiang Jiao","doi":"10.1016/j.jechem.2024.09.064","DOIUrl":null,"url":null,"abstract":"<div><div>The utilization of seawater, a plentiful and cost-effective resource, instead of freshwater for H<sub>2</sub> production through electrolysis has garnered significant attention. Herein, we present the synthesis of open-structured Fe-Co phosphide (FCP) nanocages for the overall seawater electrolysis, employing metallurgical solid waste (steel rolling sludge, SRS) as the precursor material. The FCP nanocages demonstrate exceptional catalytic activity for the hydrogen evolution reaction (HER) in all pH scales, achieving performance comparable to that of Pt/C catalysts at high current densities. The electrolyzer assembled with FCP||FCP requires 1.57 and 1.68 V to achieve current densities of 10 and 100 mA cm<sup>−2</sup>, respectively. Furthermore, the assembled FCP electrolyzer showcases over 100 h of cycling stability and nearly 100% Faradaic efficiency. Crucially, it can be powered by commercially available silicon solar panels, operating under an intensity of 100 mW cm<sup>−2</sup>, and by wind-driven sources, rendering it highly promising for real-world applications. The seawater hydrogen evolution system coupled with levofloxacin (LEV) degradation was constructed for the first time. The oxidation potential of LEV oxidation reaction (LEVOR) was significantly lower than that of oxygen evolution reaction (OER), indicating that the LEV degradation reaction occurred preferentially and achieved a removal efficiency of 98.57% within 60 min. This study provides effective strategies for valorizing SRS and offers insights into the fabrication of high-performance catalysts.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 661-675"},"PeriodicalIF":13.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007101","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of seawater, a plentiful and cost-effective resource, instead of freshwater for H2 production through electrolysis has garnered significant attention. Herein, we present the synthesis of open-structured Fe-Co phosphide (FCP) nanocages for the overall seawater electrolysis, employing metallurgical solid waste (steel rolling sludge, SRS) as the precursor material. The FCP nanocages demonstrate exceptional catalytic activity for the hydrogen evolution reaction (HER) in all pH scales, achieving performance comparable to that of Pt/C catalysts at high current densities. The electrolyzer assembled with FCP||FCP requires 1.57 and 1.68 V to achieve current densities of 10 and 100 mA cm−2, respectively. Furthermore, the assembled FCP electrolyzer showcases over 100 h of cycling stability and nearly 100% Faradaic efficiency. Crucially, it can be powered by commercially available silicon solar panels, operating under an intensity of 100 mW cm−2, and by wind-driven sources, rendering it highly promising for real-world applications. The seawater hydrogen evolution system coupled with levofloxacin (LEV) degradation was constructed for the first time. The oxidation potential of LEV oxidation reaction (LEVOR) was significantly lower than that of oxygen evolution reaction (OER), indicating that the LEV degradation reaction occurred preferentially and achieved a removal efficiency of 98.57% within 60 min. This study provides effective strategies for valorizing SRS and offers insights into the fabrication of high-performance catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用冶金固体废弃物制备的磷化铁-钴空心纳米笼在全 PH 级水/碱性海水中实现高效稳定的氢进化和抗生素降解
海水资源丰富且成本低廉,利用海水代替淡水进行电解生产 H2 已引起广泛关注。在此,我们以冶金固体废弃物(轧钢污泥,SRS)为前驱体材料,合成了用于整体海水电解的开放结构磷化铁-钴(FCP)纳米笼。FCP 纳米电容器在所有 pH 值范围内对氢进化反应(HER)都表现出卓越的催化活性,在高电流密度下可达到与 Pt/C 催化剂相媲美的性能。使用 FCP||FCP 组装的电解槽分别需要 1.57 和 1.68 V 的电压才能达到 10 和 100 mA cm-2 的电流密度。此外,组装后的 FCP 电解槽具有超过 100 小时的循环稳定性和近 100% 的法拉第效率。最重要的是,它可以使用市售的硅太阳能电池板(工作强度为 100 mW cm-2)和风力资源供电,因此在实际应用中大有可为。首次构建了结合左氧氟沙星(LEV)降解的海水氢进化系统。左氧氟沙星氧化反应(LEVOR)的氧化电位明显低于氧进化反应(OER)的氧化电位,表明左氧氟沙星降解反应优先发生,并在 60 分钟内实现了 98.57% 的去除效率。这项研究为 SRS 的增值提供了有效策略,并为高性能催化剂的制造提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
期刊最新文献
Catalytic production of high-energy-density spiro polycyclic jet fuel with biomass derivatives Metallized polymer current collector as “stress acceptor” for stable micron-sized silicon anodes Microdynamic modulation through Pt–O–Ni proton and electron “superhighway” for pH-universal hydrogen evolution High-areal-capacity and long-life sulfide-based all-solid-state lithium battery achieved by regulating surface-to-bulk oxygen activity Introducing strong metal–oxygen bonds to suppress the Jahn-Teller effect and enhance the structural stability of Ni/Co-free Mn-based layered oxide cathodes for potassium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1