Collective departure time allocation in large-scale urban networks: A flexible modeling framework with trip length and desired arrival time distributions
{"title":"Collective departure time allocation in large-scale urban networks: A flexible modeling framework with trip length and desired arrival time distributions","authors":"Mostafa Ameli , Jean-Patrick Lebacque , Negin Alisoltani , Ludovic Leclercq","doi":"10.1016/j.trb.2024.102990","DOIUrl":null,"url":null,"abstract":"<div><div>Urban traffic congestion remains a persistent issue for cities worldwide. Recent macroscopic models have adopted a mathematically well-defined relation between network flow and density to characterize traffic states over an urban region. Despite advances in these models, capturing the complex dynamics of urban traffic congestion requires considering the heterogeneous characteristics of trips. Classic macroscopic models, e.g., bottleneck and bathtub models and their extensions, have attempted to account for these characteristics, such as trip-length distribution and desired arrival times. However, they often make assumptions that fall short of reflecting real-world conditions. To address this, generalized bathtub models were recently proposed, introducing a new state variable to capture any distribution of remaining trip lengths. This study builds upon this work to formulate and solve the social optimum, a solution minimizing the sum of all users’ generalized (i.e., social and monetary) costs for a departure time choice model. The proposed framework can accommodate any distribution for desired arrival time and trip length, making it more adaptable to the diverse array of trip characteristics in an urban setting. In addition, the existence of the solution is proven, and the proposed solution method calculates the social optimum analytically. The numerical results show that the method is computationally efficient. The proposed methodology is validated on the real test case of Lyon North City, benchmarking with deterministic and stochastic user equilibria.</div></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"189 ","pages":"Article 102990"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261524001140","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Urban traffic congestion remains a persistent issue for cities worldwide. Recent macroscopic models have adopted a mathematically well-defined relation between network flow and density to characterize traffic states over an urban region. Despite advances in these models, capturing the complex dynamics of urban traffic congestion requires considering the heterogeneous characteristics of trips. Classic macroscopic models, e.g., bottleneck and bathtub models and their extensions, have attempted to account for these characteristics, such as trip-length distribution and desired arrival times. However, they often make assumptions that fall short of reflecting real-world conditions. To address this, generalized bathtub models were recently proposed, introducing a new state variable to capture any distribution of remaining trip lengths. This study builds upon this work to formulate and solve the social optimum, a solution minimizing the sum of all users’ generalized (i.e., social and monetary) costs for a departure time choice model. The proposed framework can accommodate any distribution for desired arrival time and trip length, making it more adaptable to the diverse array of trip characteristics in an urban setting. In addition, the existence of the solution is proven, and the proposed solution method calculates the social optimum analytically. The numerical results show that the method is computationally efficient. The proposed methodology is validated on the real test case of Lyon North City, benchmarking with deterministic and stochastic user equilibria.
期刊介绍:
Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.