{"title":"Design an intermediary mobility-as-a-service (MaaS) platform using many-to-many stable matching framework","authors":"Rui Yao, Kenan Zhang","doi":"10.1016/j.trb.2024.102991","DOIUrl":null,"url":null,"abstract":"<div><div>Mobility-as-a-service (MaaS) provides seamless door-to-door trips by integrating different transport modes. Although many MaaS platforms have emerged in recent years, most of them remain at a limited integration level. This study investigates the assignment and pricing problem for a MaaS platform as an intermediary in a multi-modal transportation network, which purchases capacity from service operators and sells multi-modal trips to travelers. The analysis framework of many-to-many stable matching is adopted to decompose the joint design problem and to derive the stability condition such that both operators and travelers are willing to participate in the MaaS system. To maximize the flexibility in route choice and remove boundaries between modes, we design an origin–destination pricing scheme for MaaS trips. On the supply side, we propose a wholesale purchase price for service capacity. Accordingly, the assignment problem is reformulated and solved as a bi-level program, where MaaS travelers make multi-modal trips to minimize their travel costs meanwhile interacting with non-MaaS travelers in the multi-modal transport system. We prove that, under the proposed pricing scheme, there always exists a stable outcome to the overall many-to-many matching problem. Further, given an optimal assignment and under some mild conditions, a unique optimal pricing scheme is ensured. Numerical experiments conducted on the extended Sioux Falls network also demonstrate that the proposed MaaS system could create a win-win-win situation—the MaaS platform is profitable and both traveler welfare and transit operator revenues increase from a baseline scenario without MaaS.</div></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"189 ","pages":"Article 102991"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261524001152","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Mobility-as-a-service (MaaS) provides seamless door-to-door trips by integrating different transport modes. Although many MaaS platforms have emerged in recent years, most of them remain at a limited integration level. This study investigates the assignment and pricing problem for a MaaS platform as an intermediary in a multi-modal transportation network, which purchases capacity from service operators and sells multi-modal trips to travelers. The analysis framework of many-to-many stable matching is adopted to decompose the joint design problem and to derive the stability condition such that both operators and travelers are willing to participate in the MaaS system. To maximize the flexibility in route choice and remove boundaries between modes, we design an origin–destination pricing scheme for MaaS trips. On the supply side, we propose a wholesale purchase price for service capacity. Accordingly, the assignment problem is reformulated and solved as a bi-level program, where MaaS travelers make multi-modal trips to minimize their travel costs meanwhile interacting with non-MaaS travelers in the multi-modal transport system. We prove that, under the proposed pricing scheme, there always exists a stable outcome to the overall many-to-many matching problem. Further, given an optimal assignment and under some mild conditions, a unique optimal pricing scheme is ensured. Numerical experiments conducted on the extended Sioux Falls network also demonstrate that the proposed MaaS system could create a win-win-win situation—the MaaS platform is profitable and both traveler welfare and transit operator revenues increase from a baseline scenario without MaaS.
期刊介绍:
Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.