{"title":"On dynamic fundamental diagrams: Implications for automated vehicles","authors":"Jiwan Jiang , Yang Zhou , Xin Wang , Soyoung Ahn","doi":"10.1016/j.trb.2024.102979","DOIUrl":null,"url":null,"abstract":"<div><div>The traffic fundamental diagram (FD) describes the relationships among fundamental traffic variables of flow, density, and speed. FD represents fundamental properties of traffic streams, giving insights into traffic performance. This paper presents a theoretical investigation of dynamic FD properties, derived directly from vehicle car-following (control) models to model traffic hysteresis. Analytical derivation of dynamic FD is enabled by (i) frequency-domain representation of vehicle kinematics (acceleration, speed, and position) to derive vehicle trajectories based on transfer function and (ii) continuum approximation of density and flow, measured along the derived trajectories using Edie's generalized definitions. The formulation is generic: the derivation of dynamic FD is possible with any analytical car-following (control) laws for human-driven vehicles or automated vehicles (AVs). Numerical experiments shed light on the effects of the density-flow measurement region and car-following parameters on the dynamic FD properties for an AV platoon.</div></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"189 ","pages":"Article 102979"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261524001036","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The traffic fundamental diagram (FD) describes the relationships among fundamental traffic variables of flow, density, and speed. FD represents fundamental properties of traffic streams, giving insights into traffic performance. This paper presents a theoretical investigation of dynamic FD properties, derived directly from vehicle car-following (control) models to model traffic hysteresis. Analytical derivation of dynamic FD is enabled by (i) frequency-domain representation of vehicle kinematics (acceleration, speed, and position) to derive vehicle trajectories based on transfer function and (ii) continuum approximation of density and flow, measured along the derived trajectories using Edie's generalized definitions. The formulation is generic: the derivation of dynamic FD is possible with any analytical car-following (control) laws for human-driven vehicles or automated vehicles (AVs). Numerical experiments shed light on the effects of the density-flow measurement region and car-following parameters on the dynamic FD properties for an AV platoon.
期刊介绍:
Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.