Photocatalytic degradation of organophosphorus pesticide (terbufos) in aqueous solutions using 3D-printed TaSe2/g-C3N4 nanocomposites

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Pub Date : 2024-11-07 DOI:10.1016/j.cej.2024.157469
Tan Phat Dao, Thi Huong Vu, Van Duc Bui, Lalitha Gnanasekaran, Tejraj M. Aminabhavi, Yasser Vasseghian, Sang-Woo Joo
{"title":"Photocatalytic degradation of organophosphorus pesticide (terbufos) in aqueous solutions using 3D-printed TaSe2/g-C3N4 nanocomposites","authors":"Tan Phat Dao, Thi Huong Vu, Van Duc Bui, Lalitha Gnanasekaran, Tejraj M. Aminabhavi, Yasser Vasseghian, Sang-Woo Joo","doi":"10.1016/j.cej.2024.157469","DOIUrl":null,"url":null,"abstract":"The combination of transition metal dichalcogenide of TaSe<sub>2</sub> with a composite of graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) and 3D printing technology enhanced the photocatalytic degradation of organophosphorus pesticide, terbufos from aqueous solutions using the 3D-printed TaSe<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> nanocomposites. The 3D-printed TaSe<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> composites efficiently degrade terbufos upon exposure to UV light, reaching more than 95% degradation of 10 ppm terbufos with a decomposition rate constant of 0.3305 min<sup>-1</sup>. This rate is 37% more enhanced than that of TaSe<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> (0.2409 min<sup>-1</sup>) and 57.98% more than that of g-C<sub>3</sub>N<sub>4</sub> (0.2092 min<sup>-1</sup>). Under visible light, terbufos degradation was achieved in 90 min at a slower rate of 0.0492 min<sup>−1</sup>, and 6.72 times less efficient than under UV light, emphasizing the superior efficiency of UV light for this system. Additionally, the mechanism, degradation pathway, and reusability of the materials are explored, underscoring the potential of 3D-printed TaSe<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> as a potential nanocomposite for photocatalytic applications.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157469","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The combination of transition metal dichalcogenide of TaSe2 with a composite of graphitic carbon nitride (g-C3N4) and 3D printing technology enhanced the photocatalytic degradation of organophosphorus pesticide, terbufos from aqueous solutions using the 3D-printed TaSe2/g-C3N4 nanocomposites. The 3D-printed TaSe2/g-C3N4 composites efficiently degrade terbufos upon exposure to UV light, reaching more than 95% degradation of 10 ppm terbufos with a decomposition rate constant of 0.3305 min-1. This rate is 37% more enhanced than that of TaSe2/g-C3N4 (0.2409 min-1) and 57.98% more than that of g-C3N4 (0.2092 min-1). Under visible light, terbufos degradation was achieved in 90 min at a slower rate of 0.0492 min−1, and 6.72 times less efficient than under UV light, emphasizing the superior efficiency of UV light for this system. Additionally, the mechanism, degradation pathway, and reusability of the materials are explored, underscoring the potential of 3D-printed TaSe2/g-C3N4 as a potential nanocomposite for photocatalytic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 3D 打印的 TaSe2/g-C3N4 纳米复合材料光催化降解水溶液中的有机磷农药(特丁磷
将过渡金属二钴化物 TaSe2 与氮化石墨碳(g-C3N4)复合材料以及三维打印技术相结合,利用三维打印的 TaSe2/g-C3N4 纳米复合材料增强了对水溶液中有机磷农药特丁磷的光催化降解。三维打印的 TaSe2/g-C3N4 复合材料在紫外线照射下可高效降解特丁磷,10 ppm 特丁磷的降解率超过 95%,分解速率常数为 0.3305 min-1。这一速率比 TaSe2/g-C3N4 的速率(0.2409 min-1)高出 37%,比 g-C3N4 的速率(0.2092 min-1)高出 57.98%。在可见光下,特丁磷在 90 分钟内实现降解,降解速率较慢,为 0.0492 min-1,降解效率是紫外光下的 6.72 倍,凸显了紫外光在该系统中的优越性。此外,研究还探讨了材料的机理、降解途径和可重复使用性,强调了三维打印 TaSe2/g-C3N4 作为一种潜在的光催化应用纳米复合材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
期刊最新文献
Photocatalytic degradation of organophosphorus pesticide (terbufos) in aqueous solutions using 3D-printed TaSe2/g-C3N4 nanocomposites Low-temperature and in-situ regenerable ozone decomposition in aircraft with zeolite-encapsulated manganese-oxo cluster catalyst “Young-Mechanical Niche” biomimetic hydrogel promotes dental pulp regeneration through YAP-dependent mechanotransduction Revealing the effects of functional group in organic linkers on properties of metal organic frameworks electrode and their performance in supercapacitors Induction of multicomponent peptide assembly via solvent exchange strategy for enhanced structure and bioactivities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1