Simon Moser, Jasmin Krummenacher, Abdessalem Aribia, Jędrzej Krzysztof Morzy, Romain Carron
{"title":"Mitigating Sn Loss via Anion Substitution in the Cu2+-Sn2+ Precursor System for Cu2ZnSn(S, Se)4 Solar Cells","authors":"Simon Moser, Jasmin Krummenacher, Abdessalem Aribia, Jędrzej Krzysztof Morzy, Romain Carron","doi":"10.1039/d4ta04539d","DOIUrl":null,"url":null,"abstract":"Solution-processing has been a very successful fabrication route for Cu2ZnSn(S, Se)4 (CZTSSe) absorbers: since 2010, every world record for CZTSSe-based solar cells has been achieved by this approach. The solution formulation in terms of both cation oxidation states and choice of counterion varies between laboratories. Here, we investigate the influence of various counter anions on the element loss mechanisms, absorber formation path and the resulting PV properties. A Cu2+-Sn2+ system was used due to its advantages in terms of fabrication in ambient conditions. We found that solutions containing excess amounts of Cl- anions result in pronounced Sn loss, as the Sn(DMSO)2Cl4 complex decomposes into volatile products at elevated temperatures. Fabricating a Sn-rich solution to accommodate for Sn loss is not a viable strategy, because it leads to SnSe2 formation. Accumulation of SnSe2 causes local PV performance degradation, which prevents the fabrication of uniform samples. By substituting a portion of Cl- ions with OAc- ions, Sn loss was mitigated, and PV performance uniformity improved. The highest efficiency achieved was 11.8% (12.5% active area). These results show the importance of precursor salt choice to mitigate Sn loss and enhance uniformity, which is a crucial aspect in view of future scale up of solution-processed CZTSSe devices.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta04539d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solution-processing has been a very successful fabrication route for Cu2ZnSn(S, Se)4 (CZTSSe) absorbers: since 2010, every world record for CZTSSe-based solar cells has been achieved by this approach. The solution formulation in terms of both cation oxidation states and choice of counterion varies between laboratories. Here, we investigate the influence of various counter anions on the element loss mechanisms, absorber formation path and the resulting PV properties. A Cu2+-Sn2+ system was used due to its advantages in terms of fabrication in ambient conditions. We found that solutions containing excess amounts of Cl- anions result in pronounced Sn loss, as the Sn(DMSO)2Cl4 complex decomposes into volatile products at elevated temperatures. Fabricating a Sn-rich solution to accommodate for Sn loss is not a viable strategy, because it leads to SnSe2 formation. Accumulation of SnSe2 causes local PV performance degradation, which prevents the fabrication of uniform samples. By substituting a portion of Cl- ions with OAc- ions, Sn loss was mitigated, and PV performance uniformity improved. The highest efficiency achieved was 11.8% (12.5% active area). These results show the importance of precursor salt choice to mitigate Sn loss and enhance uniformity, which is a crucial aspect in view of future scale up of solution-processed CZTSSe devices.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.