{"title":"Predicting Feynman periods in ϕ4-theory","authors":"Paul-Hermann Balduf, Kimia Shaban","doi":"10.1007/JHEP11(2024)038","DOIUrl":null,"url":null,"abstract":"<p>We present efficient data-driven approaches to predict the value of subdivergence-free Feynman integrals (Feynman periods) in <i>ϕ</i><sup>4</sup>-theory from properties of the underlying Feynman graphs, based on a statistical examination of almost 2 million graphs. We find that the numbers of cuts and cycles determines the period to better than 2% relative accuracy. Hepp bound and Martin invariant allow for even more accurate predictions. In most cases, the period is a multi-linear function of the properties in question. Furthermore, we investigate the usefulness of machine-learning algorithms to predict the period. When sufficiently many properties of the graph are used, the period can be predicted with better than 0.05% relative accuracy.</p><p>We use one of the constructed prediction models for weighted Monte-Carlo sampling of Feynman graphs, and compute the primitive contribution to the beta function of <i>ϕ</i><sup>4</sup>-theory at <i>L</i> ∈ {13, … , 17} loops. Our results confirm the previously known numerical estimates of the primitive beta function and improve their accuracy. Compared to uniform random sampling of graphs, our new algorithm is 1000-times faster to reach a desired accuracy, or reaches 32-fold higher accuracy in fixed runtime.</p><p>The dataset of all periods computed for this work, combined with a previous dataset, is made publicly available. Besides the physical application, it could serve as a benchmark for graph-based machine learning algorithms.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)038.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)038","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We present efficient data-driven approaches to predict the value of subdivergence-free Feynman integrals (Feynman periods) in ϕ4-theory from properties of the underlying Feynman graphs, based on a statistical examination of almost 2 million graphs. We find that the numbers of cuts and cycles determines the period to better than 2% relative accuracy. Hepp bound and Martin invariant allow for even more accurate predictions. In most cases, the period is a multi-linear function of the properties in question. Furthermore, we investigate the usefulness of machine-learning algorithms to predict the period. When sufficiently many properties of the graph are used, the period can be predicted with better than 0.05% relative accuracy.
We use one of the constructed prediction models for weighted Monte-Carlo sampling of Feynman graphs, and compute the primitive contribution to the beta function of ϕ4-theory at L ∈ {13, … , 17} loops. Our results confirm the previously known numerical estimates of the primitive beta function and improve their accuracy. Compared to uniform random sampling of graphs, our new algorithm is 1000-times faster to reach a desired accuracy, or reaches 32-fold higher accuracy in fixed runtime.
The dataset of all periods computed for this work, combined with a previous dataset, is made publicly available. Besides the physical application, it could serve as a benchmark for graph-based machine learning algorithms.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).