Aleksandr Azatov, Xander Nagels, Miguel Vanvlasselaer, Wen Yin
{"title":"Populating secluded dark sector with ultra-relativistic bubbles","authors":"Aleksandr Azatov, Xander Nagels, Miguel Vanvlasselaer, Wen Yin","doi":"10.1007/JHEP11(2024)129","DOIUrl":null,"url":null,"abstract":"<p>We study Dark Matter production during first order phase transitions from bubble-plasma collisions. We focus on scenarios where the Dark Matter sector is secluded and its interaction with the visible sector (including the Standard Model) originates from dimension-five and dimension-six operators. We find that such DM is generally heavy and has a large initial velocity, leading to the possibility of DM being warm today. We differentiate between the cases of weakly and strongly coupled dark sectors, where, in the latter case, we focus on glueball DM, which turns out to have very distinct phenomenological properties. We also systematically compute the Freeze-In production of the dark sector and compare it with the bubble-plasma DM abundances.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)129.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)129","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We study Dark Matter production during first order phase transitions from bubble-plasma collisions. We focus on scenarios where the Dark Matter sector is secluded and its interaction with the visible sector (including the Standard Model) originates from dimension-five and dimension-six operators. We find that such DM is generally heavy and has a large initial velocity, leading to the possibility of DM being warm today. We differentiate between the cases of weakly and strongly coupled dark sectors, where, in the latter case, we focus on glueball DM, which turns out to have very distinct phenomenological properties. We also systematically compute the Freeze-In production of the dark sector and compare it with the bubble-plasma DM abundances.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).