Deep learning to predict cardiovascular mortality from aortic disease in heavy smokers

Alexander Rau, Lea Michel, Ben Wilhelm, Vineet K. Raghu, Marco Reisert, Matthias Jung, Elias Kellner, Christopher L. Schlett, Hugo J. W. L. Aerts, Michael T. Lu, Fabian Bamberg, Jakob Weiss
{"title":"Deep learning to predict cardiovascular mortality from aortic disease in heavy smokers","authors":"Alexander Rau, Lea Michel, Ben Wilhelm, Vineet K. Raghu, Marco Reisert, Matthias Jung, Elias Kellner, Christopher L. Schlett, Hugo J. W. L. Aerts, Michael T. Lu, Fabian Bamberg, Jakob Weiss","doi":"10.1038/s44325-024-00029-3","DOIUrl":null,"url":null,"abstract":"Aortic angiopathy is a common manifestation of cardiovascular disease (CVD) and may serve as a surrogate marker of CVD burden. While the maximum aortic diameter is the primary prognostic measure, the potential of other features to improve risk prediction remains uncertain. This study developed a deep learning framework to automatically quantify thoracic aortic disease features and assessed their prognostic value in predicting CVD mortality among heavy smokers. Using non-contrast chest CTs from the National Lung Screening Trial (NLST), aortic features quantified included maximum diameter, volume, and calcification burden. Among 24,770 participants, 440 CVD deaths occurred over a mean 6.3-year follow-up. Aortic calcifications and volume were independently associated with CVD mortality, even after adjusting for traditional risk factors and coronary artery calcifications. These findings suggest that deep learning-derived aortic features could improve CVD risk prediction in high-risk populations, enabling more personalized prevention strategies.","PeriodicalId":501706,"journal":{"name":"npj Cardiovascular Health","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44325-024-00029-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Cardiovascular Health","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44325-024-00029-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aortic angiopathy is a common manifestation of cardiovascular disease (CVD) and may serve as a surrogate marker of CVD burden. While the maximum aortic diameter is the primary prognostic measure, the potential of other features to improve risk prediction remains uncertain. This study developed a deep learning framework to automatically quantify thoracic aortic disease features and assessed their prognostic value in predicting CVD mortality among heavy smokers. Using non-contrast chest CTs from the National Lung Screening Trial (NLST), aortic features quantified included maximum diameter, volume, and calcification burden. Among 24,770 participants, 440 CVD deaths occurred over a mean 6.3-year follow-up. Aortic calcifications and volume were independently associated with CVD mortality, even after adjusting for traditional risk factors and coronary artery calcifications. These findings suggest that deep learning-derived aortic features could improve CVD risk prediction in high-risk populations, enabling more personalized prevention strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习预测重度吸烟者因主动脉疾病导致的心血管疾病死亡率
主动脉血管病变是心血管疾病(CVD)的常见表现,可作为心血管疾病负担的替代标志物。虽然主动脉最大直径是主要的预后指标,但其他特征在改善风险预测方面的潜力仍不确定。本研究开发了一种深度学习框架,用于自动量化胸主动脉疾病特征,并评估其在预测重度吸烟者心血管疾病死亡率方面的预后价值。利用国家肺筛查试验(NLST)的非对比胸部 CT,量化的主动脉特征包括最大直径、体积和钙化负荷。在 24,770 名参与者中,有 440 人在平均 6.3 年的随访期间死于心血管疾病。即使对传统风险因素和冠状动脉钙化进行调整后,主动脉钙化和体积仍与心血管疾病死亡率独立相关。这些研究结果表明,深度学习衍生的主动脉特征可以改善高危人群的心血管疾病风险预测,从而制定更加个性化的预防策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transcriptomic analysis of circulating extracellular vesicles during the perioperative period of Fontan and Glenn surgery Genetic and molecular underpinnings of atrial fibrillation Multi-channel masked autoencoder and comprehensive evaluations for reconstructing 12-lead ECG from arbitrary single-lead ECG Optimal facial regions for remote heart rate measurement during physical and cognitive activities Atrial cardiomyopathy in endurance athletes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1