Mitophagy Unveiled: Exploring the Nexus of Mitochondrial Health and Neuroendocrinopathy

IF 2.8 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Neuroscience Pub Date : 2024-11-08 DOI:10.1007/s12031-024-02280-w
Mega Obukohwo Oyovwi, Emeka Williams Ugwuishi, Onoriode Andrew Udi, Gregory Joseph Uchechukwu
{"title":"Mitophagy Unveiled: Exploring the Nexus of Mitochondrial Health and Neuroendocrinopathy","authors":"Mega Obukohwo Oyovwi,&nbsp;Emeka Williams Ugwuishi,&nbsp;Onoriode Andrew Udi,&nbsp;Gregory Joseph Uchechukwu","doi":"10.1007/s12031-024-02280-w","DOIUrl":null,"url":null,"abstract":"<div><p>Mitochondria play a pivotal role in cellular metabolism, energy production, and apoptotic signaling, making mitophagy, the selective degradation of damaged mitochondria, crucial for mitochondrial health. Dysregulation of mitophagy has been implicated in various neuroendocrinopathies, yet the mechanisms linking these processes remain poorly understood. This review aims to explore the intersection between mitophagy and neuroendocrinopathy, addressing the critical gaps in knowledge regarding how mitochondrial dysfunction may contribute to the pathophysiology of neuroendocrine disorders. We conducted a comprehensive literature review of studies published on mitophagy and neuroendocrinopathies, focusing on data that elucidate the pathways involved and the clinical implications of mitochondrial health in neuroendocrine contexts. Our findings indicate that altered mitophagy may lead to the accumulation of dysfunctional mitochondria, contributing to neuroendocrine dysregulation. We present evidence linking impaired mitochondrial clearance to disease models of conditions such as metabolic syndrome, depression, and stress-related disorders, highlighting the potential for therapeutic interventions targeting mitophagy. While significant advances have been made in understanding mitochondrial biology, the direct interplay between mitophagy and neuroendocrinopathies remains underexplored. This review underscores the necessity for further research to elucidate these connections, which may offer novel insights into disease mechanisms and therapeutic strategies for treating maladaptive neuroendocrine responses.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-024-02280-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondria play a pivotal role in cellular metabolism, energy production, and apoptotic signaling, making mitophagy, the selective degradation of damaged mitochondria, crucial for mitochondrial health. Dysregulation of mitophagy has been implicated in various neuroendocrinopathies, yet the mechanisms linking these processes remain poorly understood. This review aims to explore the intersection between mitophagy and neuroendocrinopathy, addressing the critical gaps in knowledge regarding how mitochondrial dysfunction may contribute to the pathophysiology of neuroendocrine disorders. We conducted a comprehensive literature review of studies published on mitophagy and neuroendocrinopathies, focusing on data that elucidate the pathways involved and the clinical implications of mitochondrial health in neuroendocrine contexts. Our findings indicate that altered mitophagy may lead to the accumulation of dysfunctional mitochondria, contributing to neuroendocrine dysregulation. We present evidence linking impaired mitochondrial clearance to disease models of conditions such as metabolic syndrome, depression, and stress-related disorders, highlighting the potential for therapeutic interventions targeting mitophagy. While significant advances have been made in understanding mitochondrial biology, the direct interplay between mitophagy and neuroendocrinopathies remains underexplored. This review underscores the necessity for further research to elucidate these connections, which may offer novel insights into disease mechanisms and therapeutic strategies for treating maladaptive neuroendocrine responses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭开线粒体吞噬的神秘面纱探索线粒体健康与神经内分泌病变的联系
线粒体在细胞新陈代谢、能量产生和凋亡信号传导中发挥着关键作用,因此有丝分裂(选择性降解受损线粒体)对线粒体的健康至关重要。有丝分裂失调与多种神经内分泌疾病有关,但人们对这些过程的关联机制仍然知之甚少。本综述旨在探索有丝分裂与神经内分泌病之间的交叉点,解决线粒体功能障碍如何导致神经内分泌失调的病理生理学方面的重要知识空白。我们对已发表的有关有丝分裂和神经内分泌疾病的研究进行了全面的文献综述,重点关注阐明神经内分泌疾病中线粒体健康所涉及的途径和临床意义的数据。我们的研究结果表明,线粒体吞噬功能的改变可能会导致功能失调线粒体的积累,从而导致神经内分泌失调。我们提出的证据表明,线粒体清除能力受损与代谢综合征、抑郁症和应激相关疾病等疾病模型有关,突出了针对有丝分裂的治疗干预措施的潜力。虽然人们在了解线粒体生物学方面取得了重大进展,但对有丝分裂与神经内分泌疾病之间的直接相互作用仍然缺乏探索。本综述强调了进一步研究阐明这些联系的必要性,这可能会为疾病机制和治疗神经内分泌不良反应的治疗策略提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Neuroscience
Journal of Molecular Neuroscience 医学-神经科学
CiteScore
6.60
自引率
3.20%
发文量
142
审稿时长
1 months
期刊介绍: The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.
期刊最新文献
Role and Interplay of Different Signaling Pathways Involved in Sciatic Nerve Regeneration Mitophagy Unveiled: Exploring the Nexus of Mitochondrial Health and Neuroendocrinopathy Antisecretory Factor 16 (AF16): A Promising Avenue for the Treatment of Traumatic Brain Injury—An In Vitro Model Approach Sex Differences in Blood Accumulation of Neurodegenerative-Related Proteins and Antioxidant Responses to Regular Physical Exercise A Ketogenic Diet Affects Gut Microbiota by Regulating Gut Microbiota and Promoting Hippocampal TRHR Expression to Combat Seizures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1