Faradically dominant pseudocapacitive graphitic carbon nitride nanosheets decorated with strontium tungstate nanospheres for supercapattery device and hydrogen evaluation reaction

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2024-11-09 DOI:10.1016/j.electacta.2024.145339
Ehtisham Umar , M. Waqas Iqbal , Fozia Shaheen , Hameed Ullah , Rizwan Wahab
{"title":"Faradically dominant pseudocapacitive graphitic carbon nitride nanosheets decorated with strontium tungstate nanospheres for supercapattery device and hydrogen evaluation reaction","authors":"Ehtisham Umar ,&nbsp;M. Waqas Iqbal ,&nbsp;Fozia Shaheen ,&nbsp;Hameed Ullah ,&nbsp;Rizwan Wahab","doi":"10.1016/j.electacta.2024.145339","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal oxides are promising for hydrogen evolution reaction (HER) and hybrid energy storage due to their excellent redox properties, inherent electrochemical activity, and abundant electroactive sites. A significant challenge limiting their broader application is their intrinsic low electrical conductivity and reduced electrochemical stability. For hybrid energy storage devices and HER, a highly electrochemical active material is designed from 2D graphitic carbon nitride nanosheet (g-C<sub>3</sub>N<sub>4</sub>) networks anchored with strontium tungstate nanospheres (SrWO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>). The excellent performance observed can be attributed to several factors: multiple electro-active sites, well-defined electronic structures, and interaction between SrWO<sub>4</sub> nanosphere on the surface of g-C<sub>3</sub>N<sub>4</sub> nanosheets surface. The supercapattery device exhibited superior energy density (65.4 W h/kg) and power density (1240.5 W/kg) in comparison. In addition, the theoretical technique was utilized to provide a detailed analysis of the experimental findings. In addition, the SrWO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> material demonstrates a low overpotential of 129 mV at -10 mA/cm<sup>2</sup>, along with Tafel slope values of 67 mV/dec for the HER, and it exhibits excellent cyclic stability. This study presents an advanced method for designing SrWO<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub>-based supercapacitors and HER platforms with nanoscale structures and optimized interface arrangements.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"510 ","pages":"Article 145339"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624015755","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal oxides are promising for hydrogen evolution reaction (HER) and hybrid energy storage due to their excellent redox properties, inherent electrochemical activity, and abundant electroactive sites. A significant challenge limiting their broader application is their intrinsic low electrical conductivity and reduced electrochemical stability. For hybrid energy storage devices and HER, a highly electrochemical active material is designed from 2D graphitic carbon nitride nanosheet (g-C3N4) networks anchored with strontium tungstate nanospheres (SrWO4/g-C3N4). The excellent performance observed can be attributed to several factors: multiple electro-active sites, well-defined electronic structures, and interaction between SrWO4 nanosphere on the surface of g-C3N4 nanosheets surface. The supercapattery device exhibited superior energy density (65.4 W h/kg) and power density (1240.5 W/kg) in comparison. In addition, the theoretical technique was utilized to provide a detailed analysis of the experimental findings. In addition, the SrWO4/g-C3N4 material demonstrates a low overpotential of 129 mV at -10 mA/cm2, along with Tafel slope values of 67 mV/dec for the HER, and it exhibits excellent cyclic stability. This study presents an advanced method for designing SrWO4/g-C3N4-based supercapacitors and HER platforms with nanoscale structures and optimized interface arrangements.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用钨酸锶纳米球装饰的伪电容性氮化石墨碳纳米片用于超级电池装置和氢评价反应
过渡金属氧化物具有出色的氧化还原特性、固有的电化学活性和丰富的电活性位点,因此在氢进化反应(HER)和混合储能方面大有可为。限制其更广泛应用的一个重大挑战是其固有的低导电性和较低的电化学稳定性。针对混合储能设备和 HER,我们设计了一种由二维氮化石墨碳纳米片(g-C3N4)网络与钨酸锶纳米球(SrWO4/g-C3N4)锚定而成的高电化学活性材料。观察到的优异性能可归因于几个因素:多个电活性位点、明确的电子结构以及 g-C3N4 纳米片表面上的 SrWO4 纳米球之间的相互作用。相比之下,超级电池装置表现出更高的能量密度(65.4 瓦时/千克)和功率密度(1240.5 瓦时/千克)。此外,还利用理论技术对实验结果进行了详细分析。此外,SrWO4/g-C3N4 材料在 -10 mA/cm2 条件下具有 129 mV 的低过电位,HER 的 Tafel 斜坡值为 67 mV/dec,并表现出优异的循环稳定性。本研究提出了一种设计基于 SrWO4/g-C3N4 的超级电容器和 HER 平台的先进方法,它具有纳米级结构和优化的界面排列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
One-pot Synthesis of Heteroatom-rich Anthraquinone-based Benzoxazine-linked Porous organic polymers for high performance supercapacitors Tailoring the Electronic Conductivity of Coating Layer on the Composite Separator for Li Metal Anode Study on the treatment of carbon black for slurry electrodes of all-iron redox flow batteries Unveiling Manganese Malate as an Electrode Material for Supercapacitors Electrochemical Synthesis and Carbon Doping of Nanostructured Iron Fluorides from the Selection of Metal Current Collectors in Lithium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1