Tan Ngoc-Lan Phan, Jin-Woo Lee, Trieu Hoang-Quan Nguyen, Hyesu Jeon, Bumjoon J. Kim
{"title":"Regiospecific Incorporation of Fluorine Atoms in Polythiophene Derivatives for Efficient Organic Solar Cells","authors":"Tan Ngoc-Lan Phan, Jin-Woo Lee, Trieu Hoang-Quan Nguyen, Hyesu Jeon, Bumjoon J. Kim","doi":"10.1021/acsami.4c14562","DOIUrl":null,"url":null,"abstract":"Derivatives of polythiophene (PT) have garnered considerable attention in organic solar cells (OSCs) because of their relatively uncomplicated molecular structures and cost-effective synthesis. Herein, we have developed two regioisomeric fluorinated PT donors, PEI3T-FITVT and PEI3T-FOTVT, to realize efficient OSCs. PEI3T-FITVT and PEI3T-FOTVT are strategically designed with different fluorine atom arrangements on thiophene-vinyl-thiophene (TVT) units. Notably, PEI3T-FOTVT possesses enhanced backbone planarity induced by F···S noncovalent interactions between two constituent building blocks. Consequently, PEI3T-FOTVT with the higher aggregation and crystalline properties leads to a 2.5-fold increase in hole mobility over PEI3T-FITVT (from 1.4 × 10<sup>–4</sup> to 3.6 × 10<sup>–4</sup> cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>). Furthermore, PEI3T-FOTVT exhibits higher domain purity than PEI3T-FITVT, leading to faster charge transport and reduced charge recombination in OSC devices. These characteristics lead to a higher power conversion efficiency of 14.4% for PEI3T-FOTVT-based OSCs, compared to 12.9% for PEI3T-FITVT-based OSCs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c14562","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Derivatives of polythiophene (PT) have garnered considerable attention in organic solar cells (OSCs) because of their relatively uncomplicated molecular structures and cost-effective synthesis. Herein, we have developed two regioisomeric fluorinated PT donors, PEI3T-FITVT and PEI3T-FOTVT, to realize efficient OSCs. PEI3T-FITVT and PEI3T-FOTVT are strategically designed with different fluorine atom arrangements on thiophene-vinyl-thiophene (TVT) units. Notably, PEI3T-FOTVT possesses enhanced backbone planarity induced by F···S noncovalent interactions between two constituent building blocks. Consequently, PEI3T-FOTVT with the higher aggregation and crystalline properties leads to a 2.5-fold increase in hole mobility over PEI3T-FITVT (from 1.4 × 10–4 to 3.6 × 10–4 cm2 V–1 s–1). Furthermore, PEI3T-FOTVT exhibits higher domain purity than PEI3T-FITVT, leading to faster charge transport and reduced charge recombination in OSC devices. These characteristics lead to a higher power conversion efficiency of 14.4% for PEI3T-FOTVT-based OSCs, compared to 12.9% for PEI3T-FITVT-based OSCs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.