{"title":"Spatial and Single Cell Analyses Reveal Heterogeneity of DNAM-1 Receptor-Ligand Interactions that Instructs Intratumoral γδT-Cell Activity","authors":"Xiaolin Wang, Hui Wang, Zhengjing Lu, Xiangjun Liu, Wenjia Chai, Wei Wang, Jun Feng, Shen Yang, Wei Yang, Haiyan Cheng, Chenghao Chen, Shihan Zhang, Nian Sun, Qiaoyin Liu, Qiliang Li, Wenqi Song, Fang Jin, Qi Zeng, Shengcai Wang, Yan Su, Huanmin Wang, Xin Ni, Jingang Gui","doi":"10.1158/0008-5472.can-24-1509","DOIUrl":null,"url":null,"abstract":"The dynamic interplay between tumor cells and γδT cells within the tumor microenvironment (TME) significantly influences disease progression and immunotherapy outcome. Here, we delved into the modulation of γδT-cell activation by tumor cell ligands CD112 and CD155, which interact with the activating receptor DNAM-1 on γδT cells. Spatial and single cell RNA sequencing (scRNA-seq), as well as spatial metabolome analysis, from neuroblastoma (NB) revealed that the expression levels and localization of CD112 and CD155 varied across and within tumors, correlating with differentiation status, metabolic pathways, and ultimately disease prognosis and patient survival. Both in vivo tumor xenograft experiments and in vitro co-culture experiments demonstrated that a high CD112/CD155 expression ratio in tumors enhanced γδT-cell-mediated cytotoxicity, while a low-ratio fostered tumor resistance. Mechanistically, CD112 sustained DNAM-1-mediated γδT-cell activation, whereas CD155 downregulated DNAM-1 expression via TRIM21-mediated ubiquitin proteasomal degradation. By interacting with tumor cells differentially expressing CD112 and CD155, intratumoral γδT cells exhibited varying degrees of activation and DNAM-1 expression, representing three major functional subsets. This study underscores the complexity of tumor-immune crosstalk, offering insights into how tumor heterogeneity shapes the immune landscape.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"9 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-1509","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic interplay between tumor cells and γδT cells within the tumor microenvironment (TME) significantly influences disease progression and immunotherapy outcome. Here, we delved into the modulation of γδT-cell activation by tumor cell ligands CD112 and CD155, which interact with the activating receptor DNAM-1 on γδT cells. Spatial and single cell RNA sequencing (scRNA-seq), as well as spatial metabolome analysis, from neuroblastoma (NB) revealed that the expression levels and localization of CD112 and CD155 varied across and within tumors, correlating with differentiation status, metabolic pathways, and ultimately disease prognosis and patient survival. Both in vivo tumor xenograft experiments and in vitro co-culture experiments demonstrated that a high CD112/CD155 expression ratio in tumors enhanced γδT-cell-mediated cytotoxicity, while a low-ratio fostered tumor resistance. Mechanistically, CD112 sustained DNAM-1-mediated γδT-cell activation, whereas CD155 downregulated DNAM-1 expression via TRIM21-mediated ubiquitin proteasomal degradation. By interacting with tumor cells differentially expressing CD112 and CD155, intratumoral γδT cells exhibited varying degrees of activation and DNAM-1 expression, representing three major functional subsets. This study underscores the complexity of tumor-immune crosstalk, offering insights into how tumor heterogeneity shapes the immune landscape.
期刊介绍:
Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research.
With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445.
Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.