Embedding generalized Lemaître-Tolman-Bondi models in polymerized spherically symmetric spacetimes

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review D Pub Date : 2024-11-08 DOI:10.1103/physrevd.110.104017
Kristina Giesel, Hongguang Liu, Eric Rullit, Parampreet Singh, Stefan Andreas Weigl
{"title":"Embedding generalized Lemaître-Tolman-Bondi models in polymerized spherically symmetric spacetimes","authors":"Kristina Giesel, Hongguang Liu, Eric Rullit, Parampreet Singh, Stefan Andreas Weigl","doi":"10.1103/physrevd.110.104017","DOIUrl":null,"url":null,"abstract":"We generalize the existing works on the way (generalized) Lemaître-Tolman-Bondi (LTB) models can be embedded into polymerized spherically symmetric models in several aspects. We reexamine such an embedding at the classical level and show that a suitable LTB condition can only be treated as a gauge fixing in the nonmarginally bound case, while in the marginally bound case, it must be considered as an additional first class constraint. A novel aspect of our formalism, based on the effective equations of motion, is to derive compatible dynamics LTB conditions for polymerized models by using holonomy and inverse triad corrections simultaneously, whereas in earlier work, these were only considered separately. Further, our formalism allows one to derive compatible LTB conditions for a vast of class of polymerized models available in the current literature. Within this broader class of polymerizations, there are effective models contained for which the classical LTB condition is a compatible one. Our results show that there exist a class of effective models for which the dynamics decouples completely along the radial direction. It turns out that this subsector is strongly linked to the property that in the temporally gauge fixed model, the algebra of the geometric contribution to the Hamiltonian constraint and the spatial diffeomorphism constraint is closed. We finally apply the formalism to existing models from the literature and compare our results to the existing ones.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"9 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.104017","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize the existing works on the way (generalized) Lemaître-Tolman-Bondi (LTB) models can be embedded into polymerized spherically symmetric models in several aspects. We reexamine such an embedding at the classical level and show that a suitable LTB condition can only be treated as a gauge fixing in the nonmarginally bound case, while in the marginally bound case, it must be considered as an additional first class constraint. A novel aspect of our formalism, based on the effective equations of motion, is to derive compatible dynamics LTB conditions for polymerized models by using holonomy and inverse triad corrections simultaneously, whereas in earlier work, these were only considered separately. Further, our formalism allows one to derive compatible LTB conditions for a vast of class of polymerized models available in the current literature. Within this broader class of polymerizations, there are effective models contained for which the classical LTB condition is a compatible one. Our results show that there exist a class of effective models for which the dynamics decouples completely along the radial direction. It turns out that this subsector is strongly linked to the property that in the temporally gauge fixed model, the algebra of the geometric contribution to the Hamiltonian constraint and the spatial diffeomorphism constraint is closed. We finally apply the formalism to existing models from the literature and compare our results to the existing ones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在聚合球对称时空中嵌入广义勒梅特-托尔曼-邦迪模型
我们从几个方面概括了现有关于(广义)勒梅特-托尔曼-邦迪(LTB)模型嵌入聚合球对称模型的研究。我们在经典层面重新审视了这种嵌入,并证明在非边际约束情况下,合适的 LTB 条件只能被视为规整,而在边际约束情况下,它必须被视为额外的第一类约束。我们的形式主义以有效运动方程为基础,其新颖之处在于通过同时使用整体性修正和反三元组修正,推导出聚合模型的兼容动力学LTB条件,而在早期的工作中,这些修正只被分开考虑。此外,我们的形式主义允许我们为现有文献中的大量聚合模型推导出兼容的 LTB 条件。在这一大类聚合模型中,包含了经典 LTB 条件兼容的有效模型。我们的研究结果表明,存在一类有效模型,其动力学沿径向完全解耦。事实证明,这个子扇区与以下性质密切相关:在时间规固定模型中,哈密顿约束的几何贡献代数和空间衍射约束是封闭的。最后,我们将形式主义应用于文献中的现有模型,并将我们的结果与现有结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
期刊最新文献
Production mechanism of the hidden charm pentaquark states𝑃𝑐⁢¯𝑐 Color-kinematics duality for nonlinear sigma models with nonsymmetric cosets Gravitational form factors of pion from top-down holographic QCD Pauli equation and charged spin-1/2particle in a weak gravitational field Second-order coherence as an indicator of quantum entanglement of Hawking radiation in moving-mirror models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1