{"title":"Ferromagnetic ferroelectricity due to the Kugel-Khomskii mechanism of orbital ordering assisted by atomic Hund's second rule effects","authors":"I. V. Solovyev, R. Ono, S. A. Nikolaev","doi":"10.1103/physrevb.110.205116","DOIUrl":null,"url":null,"abstract":"The exchange interactions in insulators depend on the orbital state of magnetic ions, obeying certain phenomenological principles, known as Goodenough-Kanamori-Anderson rules. Particularly, the ferro order of alike orbitals tends to stabilize antiferromagnetic interactions, while the antiferro order of unlike orbitals favors ferromagnetic interactions. The Kugel-Khomskii theory provides a universal view on such coupling between spin and orbital degrees of freedom, based on the superexchange processes: namely, for a given magnetic order, the occupied orbitals tend to arrange in a way to further minimize the exchange energy. Then, if two magnetic sites are connected by the spatial inversion, the antiferro orbital order should lead to the ferromagnetic coupling <i>and</i> break the inversion symmetry. This constitutes the basic idea of our work, which provides a pathway for designing ferromagnetic ferroelectrics: the rare but fundamentally and practically important multiferroic materials. After illustrating the basic idea on toy-model examples, we propose that such behavior can be indeed realized in the van der Waals ferromagnet <mjx-container ctxtmenu_counter=\"652\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper V upper I 3\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">V</mjx-c><mjx-c style=\"padding-top: 0.657em;\">I</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container>, employing for this analysis the realistic model derived from first-principles calculations for magnetic <mjx-container ctxtmenu_counter=\"653\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 2 1)\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"2\" data-semantic- data-semantic-owns=\"0 2 1\" data-semantic-role=\"implicit\" data-semantic-speech=\"3 d\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> bands. We argue that the intra-atomic interactions responsible for Hund's second rule, acting against the crystal field, tend to restore the orbital degeneracy of the ionic <mjx-container ctxtmenu_counter=\"654\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"d squared\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑑</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-math></mjx-container> state in <mjx-container ctxtmenu_counter=\"655\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper V upper I 3\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">V</mjx-c><mjx-c style=\"padding-top: 0.657em;\">I</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> and, thus, provide a necessary flexibility for activating the Kugel-Khomskii mechanism of the orbital ordering. In the honeycomb lattice, this orbital ordering breaks the inversion symmetry, stabilizing the ferromagnetic-ferroelectric ground state. The symmetry breaking leads to the canting of magnetization, which can be further controlled by the magnetic field, producing a huge change of electric polarization.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"446 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.205116","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The exchange interactions in insulators depend on the orbital state of magnetic ions, obeying certain phenomenological principles, known as Goodenough-Kanamori-Anderson rules. Particularly, the ferro order of alike orbitals tends to stabilize antiferromagnetic interactions, while the antiferro order of unlike orbitals favors ferromagnetic interactions. The Kugel-Khomskii theory provides a universal view on such coupling between spin and orbital degrees of freedom, based on the superexchange processes: namely, for a given magnetic order, the occupied orbitals tend to arrange in a way to further minimize the exchange energy. Then, if two magnetic sites are connected by the spatial inversion, the antiferro orbital order should lead to the ferromagnetic coupling and break the inversion symmetry. This constitutes the basic idea of our work, which provides a pathway for designing ferromagnetic ferroelectrics: the rare but fundamentally and practically important multiferroic materials. After illustrating the basic idea on toy-model examples, we propose that such behavior can be indeed realized in the van der Waals ferromagnet VI3, employing for this analysis the realistic model derived from first-principles calculations for magnetic 3𝑑 bands. We argue that the intra-atomic interactions responsible for Hund's second rule, acting against the crystal field, tend to restore the orbital degeneracy of the ionic 𝑑2 state in VI3 and, thus, provide a necessary flexibility for activating the Kugel-Khomskii mechanism of the orbital ordering. In the honeycomb lattice, this orbital ordering breaks the inversion symmetry, stabilizing the ferromagnetic-ferroelectric ground state. The symmetry breaking leads to the canting of magnetization, which can be further controlled by the magnetic field, producing a huge change of electric polarization.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter