{"title":"Optical conductivity of the topologically nontrivial MXenes Mo2HfC2O2 and W2HfC2O2 : First-principles calculation and effective model analysis","authors":"Tetsuro Habe","doi":"10.1103/physrevb.111.035422","DOIUrl":null,"url":null,"abstract":"The optical conductivity and the relevant electronic excitation processes are investigated in topologically nontrivial MXenes Mo</a:mi>2</a:mn></a:msub>HfC</a:mi>2</a:mn></a:msub>O</a:mi>2</a:mn></a:msub></a:mrow></a:math> and <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:msub><c:mi mathvariant=\"normal\">W</c:mi><c:mn>2</c:mn></c:msub><c:msub><c:mi>HfC</c:mi><c:mn>2</c:mn></c:msub><c:msub><c:mi mathvariant=\"normal\">O</c:mi><c:mn>2</c:mn></c:msub></c:mrow></c:math> utilizing first-principles calculation and effective model analysis. The numerical calculation based on the first-principles band structure reveals the presence of several characteristic features in the spectrum of optical conductivity as a function of photon energy. The drastic dependence on the photon polarization angle is also presented in terms of apparent features. In this paper, an effective model is also generated referring to the crystal symmetries and applied to reveal the microscopic origin of the characteristics. Then, it is shown that some features are strongly related to parity inversion between the conduction and valence bands, the key signature in electronic structures of topologically nontrivial insulators. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"77 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.035422","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The optical conductivity and the relevant electronic excitation processes are investigated in topologically nontrivial MXenes Mo2HfC2O2 and W2HfC2O2 utilizing first-principles calculation and effective model analysis. The numerical calculation based on the first-principles band structure reveals the presence of several characteristic features in the spectrum of optical conductivity as a function of photon energy. The drastic dependence on the photon polarization angle is also presented in terms of apparent features. In this paper, an effective model is also generated referring to the crystal symmetries and applied to reveal the microscopic origin of the characteristics. Then, it is shown that some features are strongly related to parity inversion between the conduction and valence bands, the key signature in electronic structures of topologically nontrivial insulators. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter