{"title":"Electron Transport and Ion Diffusion in Hydrogen-Bonded Interlayer Cross-Linked Graphene/MXene for Wearable Micro-Sensors","authors":"Shifan Zhu, Wenshuai Yang, Chenyang Hao, Zhiheng Xu, Haijun Tao, Xiaobin Tang, Yuqiao Wang","doi":"10.1002/smll.202405644","DOIUrl":null,"url":null,"abstract":"<p>2D graphene and MXene have attracted much attention in the field of energy storage devices and wearable sensors due to their excellent electrical conductivity and mechanical properties. However, the capacitance of their composites is limited by low electron transport and sluggish ion diffusion due to the lack of electron transport and ion diffusion channels between stacked interlayers. Herein, this work reports the possibility of using disodium terephthalate as an auxiliary conductive bridge to cross-link the interlayer interaction between graphene and MXene from theoretical analysis and experimental verification. The cross-linker with a dicarboxyl group and a conjugated structure forms hydrogen bonds with the hydroxyl groups on the surface of graphene and MXene to provide a pathway for interlayer electron transfer, while inhibiting interlayer stacking and ensuring an effective ion diffusion process. To verify the actual effect of this approach, micro-sensors are assembled by the integration of micro-supercapacitors. The assembled micro-sensors demonstrate real-time monitoring of body movements and temperature signals. This work provides a feasible strategy to promote electron transport and ion diffusion in layered composites to design next-generation multifunctional micro-devices.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 2","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202405644","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
2D graphene and MXene have attracted much attention in the field of energy storage devices and wearable sensors due to their excellent electrical conductivity and mechanical properties. However, the capacitance of their composites is limited by low electron transport and sluggish ion diffusion due to the lack of electron transport and ion diffusion channels between stacked interlayers. Herein, this work reports the possibility of using disodium terephthalate as an auxiliary conductive bridge to cross-link the interlayer interaction between graphene and MXene from theoretical analysis and experimental verification. The cross-linker with a dicarboxyl group and a conjugated structure forms hydrogen bonds with the hydroxyl groups on the surface of graphene and MXene to provide a pathway for interlayer electron transfer, while inhibiting interlayer stacking and ensuring an effective ion diffusion process. To verify the actual effect of this approach, micro-sensors are assembled by the integration of micro-supercapacitors. The assembled micro-sensors demonstrate real-time monitoring of body movements and temperature signals. This work provides a feasible strategy to promote electron transport and ion diffusion in layered composites to design next-generation multifunctional micro-devices.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.