Shasha Guo, Mohamed Ait Tamerd, Changyuan Li, Xinyue Shi, Menghao Yang, Jingrong Hou, Jie Liu, Mingxue Tang, Shu-Chih Haw, Chien-Te Chen, Ting-Shan Chan, Chang-Yang Kuo, Zhiwei Hu, Long Yang, Jiwei Ma
{"title":"Activating Sodium Intercalation in Cation-Deficient Fe3O4 Through Mo Substitution","authors":"Shasha Guo, Mohamed Ait Tamerd, Changyuan Li, Xinyue Shi, Menghao Yang, Jingrong Hou, Jie Liu, Mingxue Tang, Shu-Chih Haw, Chien-Te Chen, Ting-Shan Chan, Chang-Yang Kuo, Zhiwei Hu, Long Yang, Jiwei Ma","doi":"10.1002/smll.202408212","DOIUrl":null,"url":null,"abstract":"Magnetite (Fe<sub>3</sub>O<sub>4</sub>), a conversion-type anode material, possesses high capacity, cost-effectiveness and environmental friendliness, positioning it as a promising candidate for the large-scale energy storage applications. However, the multi-electron reactions in sodium-ion batteries face challenges originated from the electrochemical inactivity of Na<sup>+</sup> intercalation in the conversion-type oxides. In this work, controllable Fe vacancies are tailored in Fe<sub>3</sub>O<sub>4</sub> lattice through the gradient Mo doping. The pair distribution function local structure analysis reveals that the key to stabilizing more Fe vacancies lies in the uniform occupation of Mo dopants at both tetrahedral (8<i>a</i>) and octahedral (16<i>d</i>) sites. The vacancy-rich structure, featuring 7.3% Fe vacancies, achieves a significantly enhanced capacity of 127 mAh g<sup>−1</sup> after 150 cycles at 100 mA g<sup>−1</sup>, in comparison with the 37 mAh g<sup>−1</sup> for defect-free Fe<sub>3</sub>O<sub>4</sub>. A comprehensive understanding of how the defective structure relates to electrochemical performance is presented, combining physical-electrochemical characterizations with theoretical calculations. The occurred Mo-O interactions enhances electronic conductivity and diminishes electrostatic interactions between intercalated Na<sup>+</sup> and lattice O<sup>2−</sup>. Concurrently, Fe vacancies facilitate bulk Na<sup>+</sup> migration with lower energy barrier. This study presents a prospect for modulating the defective structure in transition metal oxides to activate fast and reversible sodium intercalation toward high-performance sodium-ion batteries.","PeriodicalId":228,"journal":{"name":"Small","volume":"25 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408212","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetite (Fe3O4), a conversion-type anode material, possesses high capacity, cost-effectiveness and environmental friendliness, positioning it as a promising candidate for the large-scale energy storage applications. However, the multi-electron reactions in sodium-ion batteries face challenges originated from the electrochemical inactivity of Na+ intercalation in the conversion-type oxides. In this work, controllable Fe vacancies are tailored in Fe3O4 lattice through the gradient Mo doping. The pair distribution function local structure analysis reveals that the key to stabilizing more Fe vacancies lies in the uniform occupation of Mo dopants at both tetrahedral (8a) and octahedral (16d) sites. The vacancy-rich structure, featuring 7.3% Fe vacancies, achieves a significantly enhanced capacity of 127 mAh g−1 after 150 cycles at 100 mA g−1, in comparison with the 37 mAh g−1 for defect-free Fe3O4. A comprehensive understanding of how the defective structure relates to electrochemical performance is presented, combining physical-electrochemical characterizations with theoretical calculations. The occurred Mo-O interactions enhances electronic conductivity and diminishes electrostatic interactions between intercalated Na+ and lattice O2−. Concurrently, Fe vacancies facilitate bulk Na+ migration with lower energy barrier. This study presents a prospect for modulating the defective structure in transition metal oxides to activate fast and reversible sodium intercalation toward high-performance sodium-ion batteries.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.