Boosting Carrier Transport in Quasi‐2D/3D Perovskite Heterojunction for High‐Performance Perovskite/Organic Tandems

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-11 DOI:10.1002/adma.202411027
Shuaiqing Kang, Ziyue Wang, Weijie Chen, Zhichao Zhang, Jianlei Cao, Jialei Zheng, Xingxing Jiang, Jiacheng Xu, Jixiang Yuan, Juan Zhu, Haiyang Chen, Xining Chen, Yaowen Li, Yongfang Li
{"title":"Boosting Carrier Transport in Quasi‐2D/3D Perovskite Heterojunction for High‐Performance Perovskite/Organic Tandems","authors":"Shuaiqing Kang, Ziyue Wang, Weijie Chen, Zhichao Zhang, Jianlei Cao, Jialei Zheng, Xingxing Jiang, Jiacheng Xu, Jixiang Yuan, Juan Zhu, Haiyang Chen, Xining Chen, Yaowen Li, Yongfang Li","doi":"10.1002/adma.202411027","DOIUrl":null,"url":null,"abstract":"Wide‐bandgap (WBG) perovskites are continuously in the limelight owing to their applicability in tandem solar cells. The main bottlenecks of WBG perovskites are interfacial non‐radiative recombination and carrier transport loss caused by interfacial defects and large energy‐level offsets, which induce additional energy losses when WBG perovskites are stacked with organic solar cells in series because of unbalanced carrier recombination in interconnecting layer (ICL). To solve these issues, 1,3‐propanediammonium iodide (PDADI) is incorporated to form Dion–Jacobson ‐phase quasi‐2D perovskites with mixed high‐n‐values in WBG perovskites. PDADI simultaneously repairs the shallow/deep defects and establishes a Type‐II energy‐level alignment between quasi‐2D/3D and 3D perovskites for rapid carrier extraction. More importantly, the short‐chain diammonium cation in quasi‐2D perovskite with high n‐values results in a short Pb–I inorganic layer spacing, which enhances the interlayer electronic coupling and weakens the quantum‐well confinement effect that restricts carrier transport. The suppressed transport loss increases the electron concentration in the ICL for balanced carrier recombination. The 0.0628 and 1.004 cm<jats:sup>2</jats:sup> perovskite/organic tandems achieve remarkable efficiencies of 25.92% and 24.63%, respectively. The quasi‐2D capping layer can inhibit ion migration, allowing perovskite/organic tandems to show excellent operational stability (<jats:italic>T</jats:italic><jats:sub>85</jats:sub> &gt; 1000 h).","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202411027","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Wide‐bandgap (WBG) perovskites are continuously in the limelight owing to their applicability in tandem solar cells. The main bottlenecks of WBG perovskites are interfacial non‐radiative recombination and carrier transport loss caused by interfacial defects and large energy‐level offsets, which induce additional energy losses when WBG perovskites are stacked with organic solar cells in series because of unbalanced carrier recombination in interconnecting layer (ICL). To solve these issues, 1,3‐propanediammonium iodide (PDADI) is incorporated to form Dion–Jacobson ‐phase quasi‐2D perovskites with mixed high‐n‐values in WBG perovskites. PDADI simultaneously repairs the shallow/deep defects and establishes a Type‐II energy‐level alignment between quasi‐2D/3D and 3D perovskites for rapid carrier extraction. More importantly, the short‐chain diammonium cation in quasi‐2D perovskite with high n‐values results in a short Pb–I inorganic layer spacing, which enhances the interlayer electronic coupling and weakens the quantum‐well confinement effect that restricts carrier transport. The suppressed transport loss increases the electron concentration in the ICL for balanced carrier recombination. The 0.0628 and 1.004 cm2 perovskite/organic tandems achieve remarkable efficiencies of 25.92% and 24.63%, respectively. The quasi‐2D capping layer can inhibit ion migration, allowing perovskite/organic tandems to show excellent operational stability (T85 > 1000 h).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
促进准 2D/3D 包晶异质结中的载流子传输,实现高性能包晶/有机串联系统
宽带隙(WBG)过氧化物因其在串联太阳能电池中的适用性而持续受到关注。WBG 包晶的主要瓶颈是界面缺陷和大能级偏移导致的界面非辐射性重组和载流子传输损耗,当 WBG 包晶与有机太阳能电池串联堆叠时,由于互连层(ICL)中载流子重组不平衡,会产生额外的能量损耗。为了解决这些问题,我们在 WBG 包晶中加入了 1,3-丙二铵碘化物 (PDADI),以形成具有混合高 n 值的 Dion-Jacobson 相准二维包晶。PDADI 可同时修复浅/深缺陷,并在准 2D/3D 和 3D 包晶石之间建立 II 型能级排列,从而实现快速载流子萃取。更重要的是,高 n 值的准二维包晶中的短链二铵盐阳离子导致 Pb-I 无机层间距变短,从而增强了层间电子耦合,削弱了限制载流子传输的量子阱限制效应。传输损耗的抑制增加了 ICL 中的电子浓度,从而实现了载流子的平衡重组。0.0628 和 1.004 cm2 的过氧化物/有机串联实现了分别为 25.92% 和 24.63% 的出色效率。准二维封盖层可抑制离子迁移,从而使包晶石/有机串联器件表现出卓越的工作稳定性(T85 > 1000 h)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Synthesis of SrZnOSe Crystals with Low Phonon Energy for Enhancing Near-Infrared Mechanoluminescence High-Yield Bioproduction of Extracellular Vesicles from Stem Cell Spheroids via Millifluidic Vortex Transport Strong Anisotropy and Giant Photothermoelectricity of 1D Alloy Nb3Se12I-Based Photodetector for Ultrabroadband Light-Detection and Encryption Imaging Application Phosphorylated Covalent Organic Framework Membranes Toward Ultrafast Single Lithium-Ion Transport Redox-Bipolar Covalent Organic Framework Cathode for Advanced Sodium-Organic Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1