Hydrogel-embedded vertically aligned metal-organic framework nanosheet membrane for efficient water harvesting

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-11 DOI:10.1038/s41467-024-54215-z
Lingyue Zhang, Ruiying Li, Shuang Zheng, Hai Zhu, Moyuan Cao, Mingchun Li, Yaowen Hu, Li Long, Haopeng Feng, Chuyang Y. Tang
{"title":"Hydrogel-embedded vertically aligned metal-organic framework nanosheet membrane for efficient water harvesting","authors":"Lingyue Zhang, Ruiying Li, Shuang Zheng, Hai Zhu, Moyuan Cao, Mingchun Li, Yaowen Hu, Li Long, Haopeng Feng, Chuyang Y. Tang","doi":"10.1038/s41467-024-54215-z","DOIUrl":null,"url":null,"abstract":"<p>Highly porous metal-organic framework (MOF) nanosheets have shown promising potential for efficient water sorption kinetics in atmospheric water harvesting (AWH) systems. However, the water uptake of single-component MOF absorbents remains limited due to their low water retention. To overcome this limitation, we present a strategy for fabricating vertically aligned MOF nanosheets on hydrogel membrane substrates (MOF-CT/PVA) to achieve ultrafast AWH with high water uptake. By employing directional growth of MOF nanosheets, we successfully create superhydrophilic MOF coating layer and pore channels for efficient water transportation to the crosslinked flexible hydrogel membrane. The designed composite water harvester exhibits ultrafast sorption kinetics, achieving 91.4% saturation within 15 min. Moreover, MOF-CT/PVA exhibits superior solar-driven water capture-release capacity even after 10 cycles of reuse. This construction approach significantly enhances the water vapor adsorption, offering a potential solution for the design of composite MOF-membrane harvesters to mitigate the freshwater crisis.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54215-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Highly porous metal-organic framework (MOF) nanosheets have shown promising potential for efficient water sorption kinetics in atmospheric water harvesting (AWH) systems. However, the water uptake of single-component MOF absorbents remains limited due to their low water retention. To overcome this limitation, we present a strategy for fabricating vertically aligned MOF nanosheets on hydrogel membrane substrates (MOF-CT/PVA) to achieve ultrafast AWH with high water uptake. By employing directional growth of MOF nanosheets, we successfully create superhydrophilic MOF coating layer and pore channels for efficient water transportation to the crosslinked flexible hydrogel membrane. The designed composite water harvester exhibits ultrafast sorption kinetics, achieving 91.4% saturation within 15 min. Moreover, MOF-CT/PVA exhibits superior solar-driven water capture-release capacity even after 10 cycles of reuse. This construction approach significantly enhances the water vapor adsorption, offering a potential solution for the design of composite MOF-membrane harvesters to mitigate the freshwater crisis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效集水的水凝胶嵌入式垂直排列金属有机框架纳米片膜
高多孔金属有机框架(MOF)纳米片在大气集水(AWH)系统中的高效吸水动力学方面表现出了巨大的潜力。然而,由于单组分 MOF 吸水剂的保水性较低,其吸水能力仍然有限。为了克服这一局限性,我们提出了一种在水凝胶膜基底(MOF-CT/PVA)上制造垂直排列的 MOF 纳米片的策略,以实现高吸水性的超快大气集水。通过定向生长 MOF 纳米片,我们成功地制造出了超亲水性 MOF 涂层和孔道,从而将水高效地输送到交联柔性水凝胶膜上。所设计的复合水收集器具有超快的吸附动力学,可在 15 分钟内达到 91.4% 的饱和度。此外,即使重复使用 10 次,MOF-CT/PVA 也能表现出卓越的太阳能驱动的水捕获-释放能力。这种构造方法大大提高了水蒸气吸附能力,为设计复合 MOF 膜采水器缓解淡水危机提供了一种潜在的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Exactly defined molecular weight poly(ethylene glycol) allows for facile identification of PEGylation sites on proteins Achieving synergistic benefits through integrated governance of cultivated cadmium contamination via multistakeholder collaboration Human Disabled-2 regulates thromboxane A2 signaling for efficient hemostasis in thrombocytopenia Phase-transformable metal-organic polyhedra for membrane processing and switchable gas separation Charting and probing the activity of ADARs in human development and cell-fate specification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1