{"title":"Human Disabled-2 regulates thromboxane A2 signaling for efficient hemostasis in thrombocytopenia","authors":"Hui-Ju Tsai, Ya-Fang Chang, Ya-Ju Hsieh, Jiaan-Der Wang, Chih-Ching Wu, Meng-Ying Ho, Ju-Chien Cheng, Ding-Ping Chen, Hsiang-Rui Liao, Ching-Ping Tseng","doi":"10.1038/s41467-024-54093-5","DOIUrl":null,"url":null,"abstract":"<p>Understanding platelet protein functions facilitates better assessment of platelet disorders. Megakaryocyte lineage-restricted human Disabled-2 knock-in (<i>hDAB2-KI</i>) mice are generated to delineate the functions of hDab2, a regulator of platelet function, in the control of bleeding associated with thrombocytopenia. Here we show that <i>hDab2-KI</i> mice with thrombocytopenia display decreased bleeding time when compared to the control mice. hDab2 augments thromboxane A<sub>2</sub> (TxA<sub>2</sub>) mimetic U46619- but not other agonists-stimulated granule secretion, integrin activation, and aggregation at a lower platelet concentration in vitro. Binding of hDab2 to phosphatidic acid (PA) facilitates formation of the PA-hDab2-AKT complex leading to an increase in U46619-stimulated AKT-Ser473 phosphorylation and the first wave of ADP/ATP release. Consistent with these findings, hDab2 expression in platelets from patients with immune thrombocytopenic purpura is positively correlated with U46619-stimulated ATP release, which in turn inversely correlated with their bleeding tendency. hDab2 appears crucial in regulating bleeding severity associated with thrombocytopenia by a functional interplay with ADP/ATP release underlying TxA<sub>2</sub> signaling.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54093-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding platelet protein functions facilitates better assessment of platelet disorders. Megakaryocyte lineage-restricted human Disabled-2 knock-in (hDAB2-KI) mice are generated to delineate the functions of hDab2, a regulator of platelet function, in the control of bleeding associated with thrombocytopenia. Here we show that hDab2-KI mice with thrombocytopenia display decreased bleeding time when compared to the control mice. hDab2 augments thromboxane A2 (TxA2) mimetic U46619- but not other agonists-stimulated granule secretion, integrin activation, and aggregation at a lower platelet concentration in vitro. Binding of hDab2 to phosphatidic acid (PA) facilitates formation of the PA-hDab2-AKT complex leading to an increase in U46619-stimulated AKT-Ser473 phosphorylation and the first wave of ADP/ATP release. Consistent with these findings, hDab2 expression in platelets from patients with immune thrombocytopenic purpura is positively correlated with U46619-stimulated ATP release, which in turn inversely correlated with their bleeding tendency. hDab2 appears crucial in regulating bleeding severity associated with thrombocytopenia by a functional interplay with ADP/ATP release underlying TxA2 signaling.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.