Phase-transformable metal-organic polyhedra for membrane processing and switchable gas separation

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-13 DOI:10.1038/s41467-024-53560-3
Po-Chun Han, Chia-Hui Chuang, Shang-Wei Lin, Xiangmei Xiang, Zaoming Wang, Mako Kuzumoto, Shun Tokuda, Tomoki Tateishi, Alexandre Legrand, Min Ying Tsang, Hsiao-Ching Yang, Kevin C.-W. Wu, Kenji Urayama, Dun-Yen Kang, Shuhei Furukawa
{"title":"Phase-transformable metal-organic polyhedra for membrane processing and switchable gas separation","authors":"Po-Chun Han, Chia-Hui Chuang, Shang-Wei Lin, Xiangmei Xiang, Zaoming Wang, Mako Kuzumoto, Shun Tokuda, Tomoki Tateishi, Alexandre Legrand, Min Ying Tsang, Hsiao-Ching Yang, Kevin C.-W. Wu, Kenji Urayama, Dun-Yen Kang, Shuhei Furukawa","doi":"10.1038/s41467-024-53560-3","DOIUrl":null,"url":null,"abstract":"<p>The capability of materials to interconvert between different phases provides more possibilities for controlling materials’ properties without additional chemical modification. The study of state-changing microporous materials just emerged and mainly involves the liquefication or amorphization of solid adsorbents into liquid or glass phases by adding non-porous components or sacrificing their porosity. The material featuring reversible phases with maintained porosity is, however, still challenging. Here, we synthesize metal-organic polyhedra (MOPs) that interconvert between the liquid-glass-crystal phases. The modular synthetic approach is applied to integrate the core MOP cavity that provides permanent microporosity with tethered polymers that dictate the phase transition. We showcase the processability of this material by fabricating a gas separation membrane featuring tunable permeability and selectivity by switching the state. Compared to most conventional porous membranes, the liquid MOP membrane particularly shows the selectivity for CO<sub>2</sub> over H<sub>2</sub> with enhanced permeability.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53560-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The capability of materials to interconvert between different phases provides more possibilities for controlling materials’ properties without additional chemical modification. The study of state-changing microporous materials just emerged and mainly involves the liquefication or amorphization of solid adsorbents into liquid or glass phases by adding non-porous components or sacrificing their porosity. The material featuring reversible phases with maintained porosity is, however, still challenging. Here, we synthesize metal-organic polyhedra (MOPs) that interconvert between the liquid-glass-crystal phases. The modular synthetic approach is applied to integrate the core MOP cavity that provides permanent microporosity with tethered polymers that dictate the phase transition. We showcase the processability of this material by fabricating a gas separation membrane featuring tunable permeability and selectivity by switching the state. Compared to most conventional porous membranes, the liquid MOP membrane particularly shows the selectivity for CO2 over H2 with enhanced permeability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于膜处理和可切换气体分离的可相变金属有机多面体
材料在不同相之间相互转换的能力为控制材料特性提供了更多可能性,而无需额外的化学改性。状态变化微孔材料的研究刚刚兴起,主要涉及通过添加无孔成分或牺牲其孔隙率,将固体吸附剂液化或非晶化为液相或玻璃相。然而,具有可逆相且保持孔隙率的材料仍然具有挑战性。在此,我们合成了可在液相-玻璃-晶体相之间相互转换的金属有机多面体(MOPs)。我们采用模块化合成方法,将提供永久微孔的核心澳门威尼斯人官网具空腔与决定相变的系链聚合物整合在一起。我们通过制造一种气体分离膜,展示了这种材料的可加工性,其特点是通过切换状态实现可调的渗透性和选择性。与大多数传统多孔膜相比,液态 MOP 膜的渗透性更强,对二氧化碳的选择性尤其高于对 H2 的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Exactly defined molecular weight poly(ethylene glycol) allows for facile identification of PEGylation sites on proteins Achieving synergistic benefits through integrated governance of cultivated cadmium contamination via multistakeholder collaboration Human Disabled-2 regulates thromboxane A2 signaling for efficient hemostasis in thrombocytopenia Phase-transformable metal-organic polyhedra for membrane processing and switchable gas separation Charting and probing the activity of ADARs in human development and cell-fate specification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1