{"title":"Iodine Boosted Fluoro‐Organic Borate Electrolytes Enabling Fluent Ion‐conductive Solid Electrolyte Interphase for High‐Performance Magnesium Metal Batteries","authors":"Xinmei Song, Jingjie Sun, Wen Ren, Lei Wang, Binze Yang, Hailong Ning, Pengbo Zhang, Zhuoma Caixiang, Zuoxiu Tie, Xuejin Zhang, Yanna NuLi, Zhong Jin","doi":"10.1002/anie.202417450","DOIUrl":null,"url":null,"abstract":"Rechargeable magnesium batteries are regarded as a promising multi‐valent battery system for low‐cost and sustainable energy storage applications. Boron‐based magnesium salts with terminal substituent fluorinated anions (Mg[B(ORF)4]2, RF = fluorinated alkyl) have exhibited impressive electrochemical stability. Nevertheless, their deployment is hindered by the complicated synthesis routes and the surface passivation of Mg anode. Herein, we report the design of an advanced electrolyte formulation comprised of B(HFIP)3 and I2 in 1,2‐dimethoxyethane (DME), which eventually convert into a Mg[B(HFIP)4]2/DME‐MgI2 electrolyte system upon interacting with Mg anode. The Mg anode reacts with I2 and the electron‐accepting B(HFIP)3, leading to the in‐situ formation of a solid‐electrolyte interphase layer composed of MgF2 and MgI2 species that can facilitate fast and stable Mg plating/stripping. Compared with the pristine Mg[B(HFIP)4]2/DME electrolyte, the Mg[B(HFIP)4]2/DME‐MgI2 electrolyte exhibited superior electrochemical performance including an ultra‐low overpotential (~80 mV), high Coulombic efficiency and a long‐cycling period over 1500 h. In result, the rechargeable magnesium batteries with Mg[B(HFIP)4]2/DME‐MgI2 electrolyte and Mo6S8 cathode show outstanding compatibility, rapid kinetics, and stable cyclability for over 1200 cycles, surpassing all previously reported boron‐based electrolytes. This work introduces a promising halogen‐enhancement strategy for boron‐based Mg‐ion electrolytes and is pivotal for the advancement and optimization of multi‐valent secondary batteries.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417450","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rechargeable magnesium batteries are regarded as a promising multi‐valent battery system for low‐cost and sustainable energy storage applications. Boron‐based magnesium salts with terminal substituent fluorinated anions (Mg[B(ORF)4]2, RF = fluorinated alkyl) have exhibited impressive electrochemical stability. Nevertheless, their deployment is hindered by the complicated synthesis routes and the surface passivation of Mg anode. Herein, we report the design of an advanced electrolyte formulation comprised of B(HFIP)3 and I2 in 1,2‐dimethoxyethane (DME), which eventually convert into a Mg[B(HFIP)4]2/DME‐MgI2 electrolyte system upon interacting with Mg anode. The Mg anode reacts with I2 and the electron‐accepting B(HFIP)3, leading to the in‐situ formation of a solid‐electrolyte interphase layer composed of MgF2 and MgI2 species that can facilitate fast and stable Mg plating/stripping. Compared with the pristine Mg[B(HFIP)4]2/DME electrolyte, the Mg[B(HFIP)4]2/DME‐MgI2 electrolyte exhibited superior electrochemical performance including an ultra‐low overpotential (~80 mV), high Coulombic efficiency and a long‐cycling period over 1500 h. In result, the rechargeable magnesium batteries with Mg[B(HFIP)4]2/DME‐MgI2 electrolyte and Mo6S8 cathode show outstanding compatibility, rapid kinetics, and stable cyclability for over 1200 cycles, surpassing all previously reported boron‐based electrolytes. This work introduces a promising halogen‐enhancement strategy for boron‐based Mg‐ion electrolytes and is pivotal for the advancement and optimization of multi‐valent secondary batteries.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.