{"title":"New insights into aqueous Hg(II) photoreduction from paddy field system to natural water: Gear effect of straw returning and soil tillage","authors":"Zhijun Fei, Zhuhong Wang, Jianxu Wang, Shouyang He, Qixin Wu, Pan Wu","doi":"10.1016/j.jhazmat.2024.136485","DOIUrl":null,"url":null,"abstract":"Soil dissolved organic matter (SDOM) has a strong complex with divalent mercury (Hg(II)) and can affect the fate of aqueous Hg(II) photoreduction. However, little is known about the influence of straw returning and soil tillage on the composition of SDOM in paddy soil and Hg(II) photoreduction in paddy water. Here, we demonstrate that the combined drivers of long-term straw returning and tillage can result in higher degrees of aromatization, and the enrichment of oxygen-containing functional groups in surface SDOM. Hg(II) photoreduction under low Hg/DOC conditions is mainly constrained by the composition of SDOM, whereas solar radiation emerged as a dominant controlling factor associated with high ratio of Hg/DOC. By increasing the release of SDOM and mobility of Hg(II), reducing the stability of Hg(II)-SDOM complexes, and potentially enhancing generation of reactive intermediates, gear effect of straw returning and soil tillage significantly enhanced Hg(II) photoreduction in the presence of surface SDOM from 0-40<!-- --> <!-- -->cm (maximum photoreduction percentage can reach 44.76 ± 2.24%). Previous inventories of Hg(0) emissions from paddy field system may have overlooked or underestimated this critical process. Future modeling work should be carried out to evaluate the role of straw returning and soil tillage on global Hg cycle.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136485","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Soil dissolved organic matter (SDOM) has a strong complex with divalent mercury (Hg(II)) and can affect the fate of aqueous Hg(II) photoreduction. However, little is known about the influence of straw returning and soil tillage on the composition of SDOM in paddy soil and Hg(II) photoreduction in paddy water. Here, we demonstrate that the combined drivers of long-term straw returning and tillage can result in higher degrees of aromatization, and the enrichment of oxygen-containing functional groups in surface SDOM. Hg(II) photoreduction under low Hg/DOC conditions is mainly constrained by the composition of SDOM, whereas solar radiation emerged as a dominant controlling factor associated with high ratio of Hg/DOC. By increasing the release of SDOM and mobility of Hg(II), reducing the stability of Hg(II)-SDOM complexes, and potentially enhancing generation of reactive intermediates, gear effect of straw returning and soil tillage significantly enhanced Hg(II) photoreduction in the presence of surface SDOM from 0-40 cm (maximum photoreduction percentage can reach 44.76 ± 2.24%). Previous inventories of Hg(0) emissions from paddy field system may have overlooked or underestimated this critical process. Future modeling work should be carried out to evaluate the role of straw returning and soil tillage on global Hg cycle.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.