Giant Charge Separation-Driving Force Together with Ultrafluent Charge Transfer in TiO2/ZnFe-LDH Photoelectrode via Ferroelectric Interface Engineering

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Pub Date : 2024-11-12 DOI:10.1021/acs.inorgchem.4c03125
Yanfang He, Aihua Yuan, Iltaf Khan, Ying Yang, Dawei Cao
{"title":"Giant Charge Separation-Driving Force Together with Ultrafluent Charge Transfer in TiO2/ZnFe-LDH Photoelectrode via Ferroelectric Interface Engineering","authors":"Yanfang He, Aihua Yuan, Iltaf Khan, Ying Yang, Dawei Cao","doi":"10.1021/acs.inorgchem.4c03125","DOIUrl":null,"url":null,"abstract":"Hydrogen fuel production using photoelectrochemical (PEC) water-splitting technology is incredibly noteworthy as it provides a sustainable and clean method to alleviate the energy environmental crisis. A highly rapid electron shuttle at the semiconductor/WOC (water oxidation cocatalyst) interface is vital to improve the bulk charge transfer and surface reaction kinetics of the photoelectrode in the PEC water-splitting system. Yet, the inevitably inferior interface transition tends to plague the performance enhancement on account of the collision of hole–electron transport across the semi/cat interface. Herein, we address these critical challenges via inserting ferroelectric layer BTO (BaTiO<sub>3</sub>) into the semi/cat interface. The embedded polarization electric field induced by ferroelectric BTO remarkably pumped hole transfer at the semiconductor/WOC (TiO<sub>2</sub>/ZnFe-LDH) interface and selectively tailored the electronic structure of LDH surface-active sites, leading to overwhelmingly improved surface hole transfer kinetics at LDH/electrolyte interface, which minish the electron–hole recombination in bulk and on the surface of TiO<sub>2</sub>. The TiO<sub>2</sub> nanorods encapsulated by ferroelectric-assisted ZnFe-LDH achieve 105% charge separation efficiency improvement and 53.8% charge injection efficiency enhancement compared with pure TiO<sub>2</sub>. This finding offers a strategic design for electrocatalytic-assisted photoelectrode systems by ferroelectric-pumped charge extraction and transfer at the semiconductor/WOC interface.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"19 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c03125","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen fuel production using photoelectrochemical (PEC) water-splitting technology is incredibly noteworthy as it provides a sustainable and clean method to alleviate the energy environmental crisis. A highly rapid electron shuttle at the semiconductor/WOC (water oxidation cocatalyst) interface is vital to improve the bulk charge transfer and surface reaction kinetics of the photoelectrode in the PEC water-splitting system. Yet, the inevitably inferior interface transition tends to plague the performance enhancement on account of the collision of hole–electron transport across the semi/cat interface. Herein, we address these critical challenges via inserting ferroelectric layer BTO (BaTiO3) into the semi/cat interface. The embedded polarization electric field induced by ferroelectric BTO remarkably pumped hole transfer at the semiconductor/WOC (TiO2/ZnFe-LDH) interface and selectively tailored the electronic structure of LDH surface-active sites, leading to overwhelmingly improved surface hole transfer kinetics at LDH/electrolyte interface, which minish the electron–hole recombination in bulk and on the surface of TiO2. The TiO2 nanorods encapsulated by ferroelectric-assisted ZnFe-LDH achieve 105% charge separation efficiency improvement and 53.8% charge injection efficiency enhancement compared with pure TiO2. This finding offers a strategic design for electrocatalytic-assisted photoelectrode systems by ferroelectric-pumped charge extraction and transfer at the semiconductor/WOC interface.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过铁电界面工程实现 TiO2/ZnFe-LDH 光电极中的巨大电荷分离驱动力和超顺畅电荷转移
利用光电化学(PEC)分水技术生产氢燃料是一种可持续的清洁方法,可缓解能源环境危机,因此非常值得关注。半导体/WOC(水氧化催化剂)界面上的快速电子穿梭对于改善 PEC 水分离系统中光电极的体电荷转移和表面反应动力学至关重要。然而,由于半/猫界面上的空穴-电子传输碰撞,不可避免的劣质界面转换往往会影响性能的提高。在此,我们通过在半猫/猫界面中插入铁电层 BTO (BaTiO3),解决了这些关键难题。铁电层 BTO 诱导的嵌入式极化电场显著地泵送了半导体/WOC(TiO2/ZnFe-LDH)界面上的空穴传输,并选择性地定制了 LDH 表面活性位点的电子结构,从而极大地改善了 LDH/电解质界面上的表面空穴传输动力学,减少了 TiO2 本体和表面的电子-空穴重组。与纯 TiO2 相比,铁电辅助 ZnFe-LDH 封装的 TiO2 纳米棒的电荷分离效率提高了 105%,电荷注入效率提高了 53.8%。这一发现为在半导体/WOC 界面通过铁电泵送电荷提取和转移的电催化辅助光电极系统提供了一种战略性设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
期刊最新文献
Elucidation of the Off-Center Displaced Mo in Octahedral Coordination in Ba2MoO5 Conformation Regulation of Perylene Diimide Derivatives by Lanthanide Coordination for Turn-On Fluorescence Sensing of Sarin Simulants Multistate Transition Metal Carbonyl Bonding Beyond Minimum Energy Pathway: Nonlocality of Spin–Orbit Interaction Antimonotungstate-Based Heterometallic Framework Formed by the Synergistic Strategy of In Situ-Generated Krebs-Type Building Units and the Substitution Reaction and Its High-Efficiency Biosensing KRAS Gene Electron Transport Chains Promote Selective Photocatalytic Conversion of CO2 to Methanol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1