Multifunctional Ultrathin Ti3C2Tx MXene@CuCo2O4 /PE Separator for Ultra-High-Energy-Density and Large-Capacity Lithium-Sulfur Pouch Cells

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-12 DOI:10.1002/adma.202410318
Zimo Huang, Yuhao Liang, Zhenzhen Wu, Yang Kong, Maohui Bai, Meng Li, Bo Hong, Taiyu Huang, Senchuan Huang, Hao Chen, Shanqing Zhang
{"title":"Multifunctional Ultrathin Ti3C2Tx MXene@CuCo2O4 /PE Separator for Ultra-High-Energy-Density and Large-Capacity Lithium-Sulfur Pouch Cells","authors":"Zimo Huang, Yuhao Liang, Zhenzhen Wu, Yang Kong, Maohui Bai, Meng Li, Bo Hong, Taiyu Huang, Senchuan Huang, Hao Chen, Shanqing Zhang","doi":"10.1002/adma.202410318","DOIUrl":null,"url":null,"abstract":"The shuttling of lithium polysulfides (LiPSs), sluggish reaction kinetics, and uncontrolled lithium deposition/stripping remain the main challenges in lithium-sulfur batteries (LSBs), which are aggravated under practical working conditions, i.e., high sulfur loading and lean electrolyte in large-capacity pouch cells. This study introduces a Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene@CuCo<sub>2</sub>O<sub>4</sub> (MCC) composite on a polyethylene (PE) separator to construct an ultrathin MXene@CuCo<sub>2</sub>O<sub>4</sub>/PE (MCCP) film. The MCCP functional separator can deliver superior LiPSs adsorption/catalysis capabilities via the MCC composite and regulate the Li<sup>+</sup> deposition through a conductive Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene framework, enhancing redox kinetics and cycling lifetime. When paired with sulfur/carbon (S/C) cathode and lithium metal anode, the resultant 10 Ah-level pouch cell with the ultrathin MCCP separator achieves an energy density of 417 Wh kg<sup>−1</sup> based on the whole cell and a stable running of 100 cycles under practical operation conditions (cathode loading = 10.0 mg cm<sup>−2</sup>, negative/positive areal capacity ratio (N/P ratio) = 2, and electrolyte/sulfur weight ratio (E/S ratio) = 2.6 µL mg<sup>−1</sup>). Furthermore, through a systematic evaluation of the as-prepared Li-S pouch cell, the study unveils the operational and failure mechanisms of LSBs under practical conditions. The achievement of ultrahigh energy density in such a large-capacity lithium-sulfur pouch cell will accelerate the commercialization of LSBs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"80 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202410318","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The shuttling of lithium polysulfides (LiPSs), sluggish reaction kinetics, and uncontrolled lithium deposition/stripping remain the main challenges in lithium-sulfur batteries (LSBs), which are aggravated under practical working conditions, i.e., high sulfur loading and lean electrolyte in large-capacity pouch cells. This study introduces a Ti3C2Tx MXene@CuCo2O4 (MCC) composite on a polyethylene (PE) separator to construct an ultrathin MXene@CuCo2O4/PE (MCCP) film. The MCCP functional separator can deliver superior LiPSs adsorption/catalysis capabilities via the MCC composite and regulate the Li+ deposition through a conductive Ti3C2Tx MXene framework, enhancing redox kinetics and cycling lifetime. When paired with sulfur/carbon (S/C) cathode and lithium metal anode, the resultant 10 Ah-level pouch cell with the ultrathin MCCP separator achieves an energy density of 417 Wh kg−1 based on the whole cell and a stable running of 100 cycles under practical operation conditions (cathode loading = 10.0 mg cm−2, negative/positive areal capacity ratio (N/P ratio) = 2, and electrolyte/sulfur weight ratio (E/S ratio) = 2.6 µL mg−1). Furthermore, through a systematic evaluation of the as-prepared Li-S pouch cell, the study unveils the operational and failure mechanisms of LSBs under practical conditions. The achievement of ultrahigh energy density in such a large-capacity lithium-sulfur pouch cell will accelerate the commercialization of LSBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于超高能量密度和大容量锂硫袋电池的多功能超薄 Ti3C2Tx MXene@CuCo2O4 /PE 分离器
锂多硫化物(LiPSs)的穿梭、缓慢的反应动力学以及不受控制的锂沉积/剥离仍然是锂硫电池(LSBs)面临的主要挑战,而在实际工作条件下,即在大容量袋式电池中的高硫负荷和贫电解液条件下,这些挑战更加严峻。本研究在聚乙烯(PE)隔膜上引入了 Ti3C2Tx MXene@CuCo2O4(MCC)复合材料,以构建超薄 MXene@CuCo2O4/PE(MCCP)薄膜。MCCP 功能性隔膜可通过 MCC 复合材料提供卓越的 LiPSs 吸附/催化能力,并通过导电 Ti3C2Tx MXene 框架调节 Li+ 沉积,从而提高氧化还原动力学和循环寿命。当与硫/碳(S/C)正极和锂金属负极搭配使用时,在实际操作条件下(正极负载 = 10.0 mg cm-2、负/正电容比(N/P 比)= 2、电解质/硫重量比(E/S 比)= 2.6 µL mg-1),采用超薄 MCCP 隔膜的 10 Ah 级袋装电池的整体能量密度达到 417 Wh kg-1,并可稳定运行 100 个循环。此外,通过对制备的锂-S 袋电池进行系统评估,该研究揭示了 LSB 在实际条件下的运行和失效机制。在这种大容量锂硫袋电池中实现超高能量密度将加速 LSB 的商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Subtle Tuning of Catalytic Well Effect in Phthalocyanine Covalent Organic Frameworks for Selective CO2 Electroreduction into C2H4 Reversible Anion‐Cation Relay‐Intercalation in a T‐MnO2 Cathode to Boost the Efficiency of Aqueous Dual‐Ion Batteries Ferroelectric Perovskite/MoS2 Channel Heterojunctions for Wide‐Window Nonvolatile Memory and Neuromorphic Computing High Electrical Conductance in Magnetic Emission Junction of Fe3GeTe2/ZnO/Ni Heterostructure via Selective Spin Emission through ZnO Ohmic Barrier Thermal‐Assisted Dry Coating Electrode Unlocking Sustainable and High‐Performance Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1