Zongtao Qu, Yan Wang, Chengxiao Zhang, Shitao Geng, Qiuchen Xu, Shuo Wang, Xiaoju Zhao, Xiao Zhang, Bin Yuan, Zhaofeng Ouyang, Hao Sun
{"title":"Thermal‐Assisted Dry Coating Electrode Unlocking Sustainable and High‐Performance Batteries","authors":"Zongtao Qu, Yan Wang, Chengxiao Zhang, Shitao Geng, Qiuchen Xu, Shuo Wang, Xiaoju Zhao, Xiao Zhang, Bin Yuan, Zhaofeng Ouyang, Hao Sun","doi":"10.1002/adma.202410974","DOIUrl":null,"url":null,"abstract":"Current battery production relies on the use of large amounts of N‐methyl‐2‐pyrrolidnone (NMP) solvent during electrode preparation, which raises serious concerns in material cost, energy consumption, and toxicity, thus demanding the innovation of dry electrodes with excellent performance. However, state‐of‐the‐art dry electrodes show inferior energy densities, particularly under high‐areal‐capacity and fast charge/discharge conditions required for practical applications. Here dry production of high‐energy‐density Li‐ and Mn‐rich (LMR) cathodes is shown based on a thermal‐assistant approach. The lithium difluoro(oxalate)borate (LiDFOB) and succinonitrile (SN) serve as two key electrode mediators to facilitate Li<jats:sup>+</jats:sup> transport, and the mild heating process for melting SN‐LiDFOB has significantly improved the distribution of various components in the electrode. These synergistic effects enable dry LMR cathodes with a maximum rate capability of 4 C (12 mA cm<jats:sup>−2</jats:sup>) and an areal capacity of 11.0 mAh cm<jats:sup>−2</jats:sup>. The resulting Li metal/LMR full cell exhibits the maximum energy and power densities of 609 Wh kg<jats:sup>−1</jats:sup> and 2,183 W kg<jats:sup>−1</jats:sup>, respectively, based on the total mass of the cathode and anode. These results not only break through the key bottleneck in energy density for dry electrodes but, in a broader context, open a new avenue for green and sustainable battery production.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"18 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202410974","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Current battery production relies on the use of large amounts of N‐methyl‐2‐pyrrolidnone (NMP) solvent during electrode preparation, which raises serious concerns in material cost, energy consumption, and toxicity, thus demanding the innovation of dry electrodes with excellent performance. However, state‐of‐the‐art dry electrodes show inferior energy densities, particularly under high‐areal‐capacity and fast charge/discharge conditions required for practical applications. Here dry production of high‐energy‐density Li‐ and Mn‐rich (LMR) cathodes is shown based on a thermal‐assistant approach. The lithium difluoro(oxalate)borate (LiDFOB) and succinonitrile (SN) serve as two key electrode mediators to facilitate Li+ transport, and the mild heating process for melting SN‐LiDFOB has significantly improved the distribution of various components in the electrode. These synergistic effects enable dry LMR cathodes with a maximum rate capability of 4 C (12 mA cm−2) and an areal capacity of 11.0 mAh cm−2. The resulting Li metal/LMR full cell exhibits the maximum energy and power densities of 609 Wh kg−1 and 2,183 W kg−1, respectively, based on the total mass of the cathode and anode. These results not only break through the key bottleneck in energy density for dry electrodes but, in a broader context, open a new avenue for green and sustainable battery production.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.