Shaojie Guo, Mengyu Yan, DongMing Xu, Pan He, Kaijian Yan, Jiexin Zhu, Yongkun Yu, Zeya Peng, Yanzhu Luo, Feifei Cao
{"title":"Anti-Freezing Hydrogel Electrolyte with Regulated Hydrogen Bond Network Enables High-Rate and Long Cycling Zinc Batteries","authors":"Shaojie Guo, Mengyu Yan, DongMing Xu, Pan He, Kaijian Yan, Jiexin Zhu, Yongkun Yu, Zeya Peng, Yanzhu Luo, Feifei Cao","doi":"10.1039/d4ee02772h","DOIUrl":null,"url":null,"abstract":"Zinc-based batteries, utilizing hydrogel electrolytes, present significant promise as power sources for next-generation flexible devices due to their stretchable nature and enhanced safety features. Nonetheless, the current hydrogel electrolytes require improvements in terms of cycling stability and rate capability. In this study, 1,2-propylene glycol is added as co-solvent to polyacrylamide hydrogel electrolytes. The co-solvent effectively modulates the internal hydrogen bond network of the hydrogel through hydroxyl and terminal methyl groups, inhibits the activity of water while preventing the solvent from forming “hand-in-hand” long-chain molecular structure, and enhances the stability of the electrode/electrolyte interface. Consequently, the symmetrical battery assembled with PAM-1,2-PG exceeded 490 h at 100 mA cm-2 and 50 mA h cm-2 (DOD of 86%). The change of hydrogen bond network endows the battery with remarkable low-temperature performance, which is more than 3780 h under -30 °C at 1 mA cm-2. Furthermore, the resulting aqueous zinc-based devices showcase high capacity and outstanding cycling durability in a wide temperature range. This work provides valuable insights into the development of high-performance hydrogel electrolytes, paving the way for dendrite-free, fast-charging, and environmentally adaptable Zn-based energy storage systems.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":null,"pages":null},"PeriodicalIF":32.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee02772h","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc-based batteries, utilizing hydrogel electrolytes, present significant promise as power sources for next-generation flexible devices due to their stretchable nature and enhanced safety features. Nonetheless, the current hydrogel electrolytes require improvements in terms of cycling stability and rate capability. In this study, 1,2-propylene glycol is added as co-solvent to polyacrylamide hydrogel electrolytes. The co-solvent effectively modulates the internal hydrogen bond network of the hydrogel through hydroxyl and terminal methyl groups, inhibits the activity of water while preventing the solvent from forming “hand-in-hand” long-chain molecular structure, and enhances the stability of the electrode/electrolyte interface. Consequently, the symmetrical battery assembled with PAM-1,2-PG exceeded 490 h at 100 mA cm-2 and 50 mA h cm-2 (DOD of 86%). The change of hydrogen bond network endows the battery with remarkable low-temperature performance, which is more than 3780 h under -30 °C at 1 mA cm-2. Furthermore, the resulting aqueous zinc-based devices showcase high capacity and outstanding cycling durability in a wide temperature range. This work provides valuable insights into the development of high-performance hydrogel electrolytes, paving the way for dendrite-free, fast-charging, and environmentally adaptable Zn-based energy storage systems.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).