Insang You, Baltej Singh, Mengyang Cui, Gillian Goward, Lanting Qian, Zachary Arthur, Graham King, Linda Nazar
{"title":"A facile route to plastic inorganic electrolytes for all-solid state batteries based on molecular design","authors":"Insang You, Baltej Singh, Mengyang Cui, Gillian Goward, Lanting Qian, Zachary Arthur, Graham King, Linda Nazar","doi":"10.1039/d4ee03944k","DOIUrl":null,"url":null,"abstract":"Solid-state lithium batteries are on the threshold of commercialization as an alternative to liquid electrolyte batteries. Glassy or amorphous solid electrolytes could bring crucial benefits, but their lack of periodicity impedes structure-derived material design. Here, we report an approach for glassy electrolyte design based on well-defined lithium metal oxychloride linear oligomers. By packing these oligomers formed by oxygen-bridged chloroaluminates, a glassy solid model is constructed. Li ions in mixed-anion coordination with distorted polyhedra favor good lithium conductivity (1.3 mS.cm-1 at 30 °C). The frustrated Li-ion geometry and non-crystallinity promote conformational dynamics of the oligomer backbone that generates mechanical plasticity. Ab-initio molecular dynamics simulations depict the conformational motion that resembles that of organic molecules. Our all-solid-state battery based on this solid electrolyte shows exceptional long term electrochemical stability with a high-nickel NCM cathode. This work shows the impact of targeted structure models for rational design of glassy plastic electrolytes.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"60 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee03944k","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-state lithium batteries are on the threshold of commercialization as an alternative to liquid electrolyte batteries. Glassy or amorphous solid electrolytes could bring crucial benefits, but their lack of periodicity impedes structure-derived material design. Here, we report an approach for glassy electrolyte design based on well-defined lithium metal oxychloride linear oligomers. By packing these oligomers formed by oxygen-bridged chloroaluminates, a glassy solid model is constructed. Li ions in mixed-anion coordination with distorted polyhedra favor good lithium conductivity (1.3 mS.cm-1 at 30 °C). The frustrated Li-ion geometry and non-crystallinity promote conformational dynamics of the oligomer backbone that generates mechanical plasticity. Ab-initio molecular dynamics simulations depict the conformational motion that resembles that of organic molecules. Our all-solid-state battery based on this solid electrolyte shows exceptional long term electrochemical stability with a high-nickel NCM cathode. This work shows the impact of targeted structure models for rational design of glassy plastic electrolytes.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).