Therapists’ Force-Profile Teach-and-Mimic Approach for Upper-Limb Rehabilitation Exoskeletons

IF 3.4 Q2 ENGINEERING, BIOMEDICAL IEEE transactions on medical robotics and bionics Pub Date : 2024-09-20 DOI:10.1109/TMRB.2024.3464697
Beatrice Luciani;Michael Sommerhalder;Marta Gandolla;Peter Wolf;Francesco Braghin;Robert Riener
{"title":"Therapists’ Force-Profile Teach-and-Mimic Approach for Upper-Limb Rehabilitation Exoskeletons","authors":"Beatrice Luciani;Michael Sommerhalder;Marta Gandolla;Peter Wolf;Francesco Braghin;Robert Riener","doi":"10.1109/TMRB.2024.3464697","DOIUrl":null,"url":null,"abstract":"In this work, we propose a framework enabling upper-limb rehabilitation exoskeletons to mimic the personalised haptic guidance of therapists. Current exoskeletons face acceptability issues as they limit physical interaction between clinicians and patients and offer only predefined levels of support that cannot be tuned during the movements, when needed. To increase acceptance, we first developed a method to estimate the therapist’s force contribution while manipulating a patient’s arm using an upper-limb exoskeleton. We achieved a precision of \n<inline-formula> <tex-math>$0.31Nm$ </tex-math></inline-formula>\n without using direct sensors. Then, we exploited the Learning-by-demonstration paradigm to learn from the therapist’s interactions. Single-joint experiments on ANYexo demonstrate that our framework, applying the Vector-search approach, can record the joint-level therapist’s interaction forces during simple tasks, link them to the kinematics of the robot, and then provide support to the user’s limb. The support is coherent with what is learnt and changes with the real-time arm kinematic configuration of the robot, assisting whatever movement the patient executes in the end-effector space without the need for manual regulation. In this way, robotic therapy sessions can exploit therapists’ expertise while reducing their manual workload.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 4","pages":"1658-1665"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684729","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10684729/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a framework enabling upper-limb rehabilitation exoskeletons to mimic the personalised haptic guidance of therapists. Current exoskeletons face acceptability issues as they limit physical interaction between clinicians and patients and offer only predefined levels of support that cannot be tuned during the movements, when needed. To increase acceptance, we first developed a method to estimate the therapist’s force contribution while manipulating a patient’s arm using an upper-limb exoskeleton. We achieved a precision of $0.31Nm$ without using direct sensors. Then, we exploited the Learning-by-demonstration paradigm to learn from the therapist’s interactions. Single-joint experiments on ANYexo demonstrate that our framework, applying the Vector-search approach, can record the joint-level therapist’s interaction forces during simple tasks, link them to the kinematics of the robot, and then provide support to the user’s limb. The support is coherent with what is learnt and changes with the real-time arm kinematic configuration of the robot, assisting whatever movement the patient executes in the end-effector space without the need for manual regulation. In this way, robotic therapy sessions can exploit therapists’ expertise while reducing their manual workload.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
治疗师对上肢康复外骨骼的力曲线教学与模仿方法
在这项工作中,我们提出了一个框架,使上肢康复外骨骼能够模仿治疗师的个性化触觉指导。目前的外骨骼面临着可接受性问题,因为它们限制了临床医生和患者之间的身体互动,而且只能提供预定义的支持水平,无法在运动过程中根据需要进行调整。为了提高接受度,我们首先开发了一种方法,用于估算治疗师在使用上肢外骨骼操纵患者手臂时的力贡献。在不使用直接传感器的情况下,我们实现了 0.31Nm$ 的精度。然后,我们利用 "示范学习 "范例从治疗师的互动中学习。在 ANYexo 上进行的单关节实验表明,我们的框架采用矢量搜索方法,能够记录关节级治疗师在执行简单任务时的交互力,将其与机器人的运动学联系起来,然后为用户的肢体提供支持。这种支持与所学到的知识相一致,并随着机器人手臂运动学配置的实时变化而变化,可协助患者在末端执行器空间中执行任何运动,而无需手动调节。通过这种方式,机器人治疗可以利用治疗师的专业知识,同时减少他们的人工工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Transactions on Medical Robotics and Bionics Vol. 6 Table of Contents IEEE Transactions on Medical Robotics and Bionics Society Information Guest Editorial Special section on the Hamlyn Symposium 2023—Immersive Tech: The Future of Medicine IEEE Transactions on Medical Robotics and Bionics Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1